Compare commits

...

31 Commits

Author SHA1 Message Date
catlog22
f1c89127dc chore: release v5.2.1 - SKILL workflow improvements
Major Changes:
- Redesigned /memory:load-skill-memory as manual activation tool
- Changed --regenerate to --update flag in skill-memory command
- Enhanced context search strategy with SKILL first priority

Details:
1. load-skill-memory command redesign:
   - Manual activation: user specifies SKILL name explicitly
   - Intent-driven doc loading: 5 levels based on task description
   - Memory-based validation: removed bash checks
   - File size: 355→132 lines (-62.8%)

2. Parameter naming consistency:
   - Renamed --regenerate to --update in skill-memory.md
   - Updated all references and examples

3. Context search strategy (global .claude):
   - Added SKILL packages as first priority tool
   - Emphasized use BEFORE Gemini analysis
   - Updated tool selection matrix and examples

See CHANGELOG.md for complete details.
2025-11-03 22:07:09 +08:00
catlog22
8926611964 refactor: update load-skill-memory command to manual activation and intent-driven loading 2025-11-03 21:55:22 +08:00
catlog22
8a9bc7a210 refactor: optimize load-skill-memory structure and remove emojis
- Merge duplicate content: consolidate Sections 4, 6, 7, 9, 10
- Reduce file size from 382 to 348 lines (-8.9%)
- Remove all emoji icons, replace with text alternatives
- Improve section flow: 8 sections total (was 11)
- Preserve all information while eliminating redundancy
2025-11-03 21:38:42 +08:00
catlog22
25a358b729 feat: implement dynamic SKILL discovery with intelligent matching
Transform load-skill-memory from manual specification to automatic discovery:

**Core Change**:
- From: User specifies SKILL name manually
- To: System automatically discovers and matches SKILL based on task context

**New Capabilities**:

1. **Three-Step Execution**:
   - Step 1: Discover all available SKILLs (.claude/skills/)
   - Step 2: Match most relevant SKILL using scoring algorithm
   - Step 3: Activate matched SKILL via Skill() tool

2. **Intelligent Matching Algorithm**:
   - **Path-Based** (Highest Priority): Direct path match from file paths
   - **Keyword Matching** (Secondary): Score by keyword overlap
   - **Action Matching** (Tertiary): Detect action verbs (分析/修改/学习)

3. **Updated Parameters**:
   - From: `<skill_name> [--level] [task description]`
   - To: `"task description or file path"`
   - More intuitive user experience

4. **New Examples**:
   ```bash
   /memory:load-skill-memory "分析热模型builder pattern实现"
   /memory:load-skill-memory "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
   /memory:load-skill-memory "修改workflow文档生成逻辑"
   ```

**Matching Examples**:

Task: "分析热模型builder pattern实现"
- hydro_generator_module: 4 points (thermal+builder+analyzing) 
- Claude_dms3: 1 point (analyzing only)

Task: "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
- Path match: hydro_generator_module  (exact path)

**Benefits**:
- No manual SKILL name required
- Automatic best match selection
- Path-based intelligent routing
- Keyword scoring for relevance
- Action verb detection for context

**User Experience**:
Before: "/memory:load-skill-memory hydro_generator_module '分析热模型'"
After: "/memory:load-skill-memory '分析热模型实现'"

System automatically discovers and activates hydro_generator_module SKILL.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:31:06 +08:00
catlog22
9e0a70150a refactor: redesign load-skill-memory to use Skill tool activation
Complete redesign from manual document reading to SKILL activation pattern:

**Before (Manual Loading)**:
- Complex level selection logic (0-3)
- Manual Read operations for each document
- Task-based auto-level selection
- ~200 lines of document loading code

**After (Skill Activation)**:
- Simple two-step: Validate → Activate
- Use Skill(command: "skill_name") tool
- System handles all documentation loading automatically
- ~100 lines simpler, more maintainable

**Key Changes**:

1. **Examples Updated**:
   - From: `/memory:load-skill-memory hydro_generator_module "分析热模型"`
   - To: `Skill(command: "hydro_generator_module")`

2. **Execution Flow Simplified**:
   - Step 1: Validate SKILL.md exists
   - Step 2: Skill(command: "skill_name")
   - System automatically handles progressive loading

3. **Removed Manual Logic**:
   - No explicit --level parameter
   - No manual document reading
   - No level selection algorithm
   - System determines context needs automatically

4. **Added SKILL Trigger Mechanism**:
   - Explains how SKILL description triggers work
   - Keyword matching (domain terms)
   - Action detection (analyzing, modifying, learning)
   - Memory gap detection
   - Path-based triggering

5. **Updated Integration Examples**:
   ```javascript
   Skill(command: "hydro_generator_module")
   SlashCommand(command: "/workflow:plan \"task\"")
   ```

**Benefits**:
- Simpler user experience (just activate SKILL)
- Automatic context optimization
- System handles complexity
- Follows Claude SKILL architecture
- Leverages built-in SKILL trigger patterns

**Philosophy Shift**:
- From: Manual control over documentation loading
- To: Trust SKILL system to load appropriate context
- Aligns with skill-memory.md description optimization

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:26:52 +08:00
catlog22
7b2160d51f feat: add /memory:load-skill-memory command for progressive SKILL loading
New command for loading SKILL package documentation with intelligent level selection:

**Two-Step Process**:
1. Validate SKILL existence in .claude/skills/{skill_name}/
2. Load documentation based on task requirements and complexity

**Progressive Loading Levels**:
- Level 0: Quick Start (~2K tokens) - Overview exploration
- Level 1: Core Modules (~10K tokens) - Module analysis
- Level 2: Complete (~25K tokens) - Code modification
- Level 3: Deep Dive (~40K tokens) - Feature implementation

**Auto-Level Selection**:
- Keyword-based detection from task description
- "快速了解" → Level 0
- "分析" → Level 1
- "修改" → Level 2
- "实现" → Level 3

**Key Features**:
- SKILL existence validation with available SKILLs listing
- Task-driven level auto-selection
- Token budget estimation
- Error handling for missing SKILLs/documentation
- Explicit --level override support

**Usage Examples**:
```bash
/memory:load-skill-memory hydro_generator_module "分析热模型"
/memory:load-skill-memory Claude_dms3 --level 2 "修改workflow"
/memory:load-skill-memory multiphysics_network "实现耦合器"
```

**Integration**:
- Works with SKILL packages generated by /memory:skill-memory
- Optimizes token usage through progressive loading
- Supports workflow planning and execution commands

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:10:32 +08:00
catlog22
aa1900a3e7 feat: enhance SKILL description to prioritize context loading when memory is empty
Optimize description format to emphasize SKILL as primary context source:

**Key Changes**:
1. Action verbs updated: "working with" → "modifying" (more explicit)
2. Added priority trigger: "especially when no relevant context exists in memory"
3. Expanded Trigger Optimization guidance with three key scenarios

**Three Key Actions**:
- analyzing (分析) - Understanding codebase structure
- modifying (修改) - Making changes to code
- learning (了解) - Exploring unfamiliar modules

**Priority Context Loading**:
- Emphasize SKILL loading when conversation memory lacks relevant context
- Position SKILL as first-choice context source for fresh inquiries
- Improve trigger sensitivity for cold-start scenarios

**Before**:
"Load this SKILL when analyzing, working with, or learning about {domain}
or files under this path for comprehensive context."

**After**:
"Load this SKILL when analyzing, modifying, or learning about {domain}
or files under this path, especially when no relevant context exists in memory."

**Impact**:
- Higher trigger rate when users ask about unfamiliar modules
- Better context initialization for new analysis sessions
- Clearer action vocabulary aligns with actual use cases

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:06:52 +08:00
catlog22
2303699b33 fix: correct description format placeholder from project_name to domain_description
Fix inconsistency between Format definition and Example usage:

**Problem**:
- Format used {project_name} placeholder (technical directory name)
- Example used "workflow management" (human-readable domain description)
- Mismatch causes incorrect description generation

**Solution**:
- Changed {project_name} → {domain_description} in format
- Added explicit guidance: "Extract human-readable domain/feature area"
- Added examples: "workflow management", "thermal modeling"
- Clarified: Use domain description, NOT technical project_name

**Impact**:
- Generated descriptions now correctly use domain terms
- Improved trigger sensitivity with natural language
- Consistent with example pattern

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:05:31 +08:00
catlog22
f7a97e8159 feat: add project path to SKILL.md description for location-based triggering
Enhance description format to include project path information:
- Add "(located at {project_path})" to description format
- Reference TARGET_PATH from Phase 1 for accurate path
- Include "or files under this path" trigger condition
- Improve sensitivity when users mention specific directories

Benefits:
- SKILL triggers when user asks about files in project directory
- Path-based context identification improves accuracy
- Better integration with file location queries

Before: "{Project} {capabilities}. Load when {scenarios}..."
After: "{Project} {capabilities} (located at {path}). Load when {scenarios} or files under this path..."

Example:
"Workflow orchestration system with CLI tools (located at /d/Claude_dms3).
Load this SKILL when analyzing, working with, or learning about workflow
management or files under this path for comprehensive context."

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 20:58:45 +08:00
catlog22
360f6f79dc feat: optimize SKILL.md description format for better trigger sensitivity
Enhance description generation in Phase 4 Step 3:
- New format emphasizes "Load this SKILL" pattern for improved triggering
- Explicitly covers three key scenarios: analyzing, working with, or learning
- Prioritizes SKILL as primary context source for project understanding
- Added trigger optimization guidance for context retrieval scenarios

Before: "{Function}. Use when {trigger conditions}."
After: "{Project} {core capabilities}. Load this SKILL when analyzing, working with, or learning about {project_name} for comprehensive context."

Example:
"Workflow orchestration system with CLI tools and documentation generation.
Load this SKILL when analyzing, working with, or learning about workflow
management for comprehensive context."

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 20:57:09 +08:00
catlog22
152037ad7b fix: correct relative path in skill-memory SKILL.md template
Update documentation path references from ../../ to ../../../:
- From: .claude/skills/{project_name}/SKILL.md
- To: .workflow/docs/{project_name}/
- Correct path depth: ../../../.workflow/docs/

Fixed paths:
- Documentation root reference
- Level 0: README.md link
- Level 2: ARCHITECTURE.md link
- Level 3: EXAMPLES.md link

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 20:49:16 +08:00
catlog22
822643e4c8 feat: increase document limit from 7 to 10 per task in docs workflow
Update task grouping constraints to support up to 10 documents per task:
- Primary constraint: ≤10 documents (up from ≤7)
- Conflict resolution thresholds adjusted accordingly
- Updated all examples (Small/Medium/Large projects)
- Maintains 2-dir grouping optimization for context sharing

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 20:39:29 +08:00
catlog22
78569a7b75 refactor: eliminate TodoWrite duplication in skill-memory phases
Simplify TodoWrite updates in each phase to one-line format, matching auto-parallel.md pattern.

**Changes**:
- Phase 1-4: Replace code block with single line "Mark phase X completed, phase Y in_progress"
- Maintain detailed TodoWrite Pattern section for complete reference
- Remove 32 redundant lines (36 deletions, 4 insertions)

**Before**:
```
**TodoWrite Update**:
```javascript
TodoWrite({todos: [
  {"content": "...", "status": "completed"},
  {"content": "...", "status": "in_progress"},
  ...
]})
```

**After**:
```
**TodoWrite**: Mark phase X completed, phase Y in_progress
```

**Benefits**:
- Eliminates duplication between phase updates and TodoWrite Pattern section
- Improves readability with concise phase-level updates
- Maintains complete TodoWrite lifecycle in dedicated pattern section
- Consistent with auto-parallel.md orchestrator pattern

**File size**: 488 lines → 456 lines (-32 lines, -6.6%)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 20:08:03 +08:00
catlog22
7aca88104b feat: enhance skill-memory auto-continue mechanism with detailed execution flow
Optimize TodoWrite auto-continuation pattern based on auto-parallel.md and docs.md best practices.

**Enhanced Auto-Continue Mechanism**:
- Added detailed "Auto-Continue Execution Flow" section with implementation rules
- Enhanced Core Rules with specific auto-continue logic (7 rules → clearer guidelines)
- Added "Completion Criteria" for each phase (validates phase success)
- Added explicit "TodoWrite Update" code blocks at each phase
- Added "After Phase X" auto-continue triggers with "no user input required" emphasis

**Improved Phase Documentation**:
- Phase 1-4: Added completion criteria and validation requirements
- Each phase now has explicit TodoWrite update pattern
- Clear state transitions: completed → in_progress → execute
- Error handling rules for failed phases

**New Sections**:
- "Auto-Continue Execution Flow" - Visual execution sequence diagram
- "Critical Implementation Rules" - 4 key rules for autonomous execution
- Status-driven execution pattern with TodoList checking
- Error handling guidelines (do not continue on failure)

**TodoWrite Pattern Enhancement**:
- Added inline comments explaining each action
- Added "Auto-Continue Logic" explanation
- Shows complete lifecycle from initialize to completion
- Includes FIRST/NEXT/FINAL action annotations

**Benefits**:
- Clear autonomous execution expectations
- No ambiguity about when to continue phases
- Explicit validation criteria for each phase
- Better error handling guidance
- Consistent with auto-parallel.md orchestrator pattern

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 20:02:44 +08:00
catlog22
aa372a8fd5 docs: correct CHANGELOG.md for v5.2.0 - highlight /memory:skill-memory command
- Update v5.2.0 focus from /memory:docs to /memory:skill-memory (actual new feature)
- Add comprehensive 4-phase orchestrator workflow description
- Document progressive loading levels (Level 0-3, 2K-40K tokens)
- Include path mirroring strategy and SKILL package structure
- Highlight /memory:docs enhancements as secondary improvements
- Add usage examples and output format

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 17:42:00 +08:00
catlog22
fd16a238fd docs: update CHANGELOG.md for v5.2.0 with /memory:docs command details
- Emphasize new command introduction rather than optimization
- Add comprehensive feature descriptions and workflow phases
- Include task grouping algorithm details and examples
- Document command parameters and integration points
- Highlight performance benefits and technical architecture

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 17:34:58 +08:00
catlog22
254715069d feat: optimize documentation task grouping strategy with document count limit
- Change primary constraint to ≤7 documents per task (previously ≤5)
- Prefer grouping 2 top-level directories for context sharing via single Gemini analysis
- Add intelligent conflict resolution: split groups when exceeding doc limit
- Update Phase 4 decomposition algorithm with detailed grouping examples
- Add doc_count field to phase2-analysis.json group assignments

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 17:31:15 +08:00
catlog22
bcebd229df feat: update SKILL.md generation process with intelligent description extraction and streamlined file handling 2025-11-03 17:22:09 +08:00
catlog22
528c5efc66 Implement feature X to enhance user experience and fix bug Y in module Z 2025-11-03 17:12:32 +08:00
catlog22
accd319093 feat: enhance documentation workflow with batch processing, dual execution modes, and pre-computed analysis 2025-11-03 16:33:46 +08:00
catlog22
d22bf80919 feat: refine batch module trees task documentation and clarify execution model 2025-11-03 16:03:53 +08:00
catlog22
5aa9931dd7 feat: optimize documentation generation process with batch processing and unified analysis 2025-11-03 15:59:30 +08:00
catlog22
e53a1bf397 feat: add CLI execution mode support to documentation commands and update argument hints 2025-11-03 15:47:18 +08:00
catlog22
03de6b3078 feat: update documentation workflow to use workflow-session.json for session metadata 2025-11-03 15:34:09 +08:00
catlog22
b18647353b feat: enhance documentation generation process with improved structure and quality guidelines 2025-11-03 15:17:37 +08:00
catlog22
cdc0af90ba feat: add support for 'codex' tool and enhance --regenerate flag handling in skill-memory command 2025-11-03 14:54:10 +08:00
catlog22
507cd696b1 Refactor skill-memory command to streamline documentation generation process
- Updated command description and argument hints for clarity.
- Changed the orchestrator role to emphasize its function as a pure orchestrator without task JSON generation.
- Implemented a 4-phase workflow for documentation generation, including auto-continue mechanisms.
- Enhanced argument parsing to include a new mode option for full or partial documentation generation.
- Simplified the output structure and improved validation steps throughout the phases.
- Revised the SKILL.md generation process to include a progressive loading guide and module index.
- Removed unnecessary complexity and reduced code size by approximately 70%.
2025-11-03 14:49:44 +08:00
catlog22
fdba75dd79 Implement feature X to enhance user experience and fix bug Y in module Z 2025-11-03 11:26:37 +08:00
catlog22
cefe6076e2 feat: add skill-memory command for generating SKILL packages with path mirroring 2025-11-03 10:31:18 +08:00
catlog22
8565dc09cd docs: clarify single-use explicit authorization for CLI tools
Add critical rule that each CLI execution requires explicit user command:
- One command authorizes ONE execution only
- Analysis does NOT authorize write operations
- Previous authorization does NOT carry over
- Applies to all CLI tools (Gemini/Qwen/Codex)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-31 15:47:47 +08:00
catlog22
74ffb27383 docs: update version to 5.1.0 and enhance changelog with agent architecture consolidation details 2025-10-28 22:03:23 +08:00
8 changed files with 1348 additions and 3061 deletions

View File

@@ -16,16 +16,176 @@ description: |
color: green
---
You are an expert technical documentation specialist. Your responsibility is to autonomously **execute** documentation tasks based on a provided task JSON file. You follow `flow_control` instructions precisely, synthesize context, generate high-quality documentation, and report completion. You do not make planning decisions.
You are an expert technical documentation specialist. Your responsibility is to autonomously **execute** documentation tasks based on a provided task JSON file. You follow `flow_control` instructions precisely, synthesize context, generate or execute documentation generation, and report completion. You do not make planning decisions.
## Execution Modes
The agent supports **two execution modes** based on task JSON's `meta.cli_execute` field:
1. **Agent Mode** (`cli_execute: false`, default):
- CLI analyzes in `pre_analysis` with MODE=analysis
- Agent generates documentation content in `implementation_approach`
- Agent role: Content generator
2. **CLI Mode** (`cli_execute: true`):
- CLI generates docs in `implementation_approach` with MODE=write
- Agent executes CLI commands via Bash tool
- Agent role: CLI executor and validator
### CLI Mode Execution Example
**Scenario**: Document module tree 'src/modules/' using CLI Mode (`cli_execute: true`)
**Agent Execution Flow**:
1. **Mode Detection**:
```
Agent reads meta.cli_execute = true → CLI Mode activated
```
2. **Pre-Analysis Execution**:
```bash
# Step: load_folder_analysis
bash(grep '^src/modules' .workflow/WFS-docs-20240120/.process/folder-analysis.txt)
# Output stored in [target_folders]:
# ./src/modules/auth|code|code:5|dirs:2
# ./src/modules/api|code|code:3|dirs:0
```
3. **Implementation Approach**:
**Step 1** (Agent parses data):
- Agent parses [target_folders] to extract folder types
- Identifies: auth (code), api (code)
- Stores result in [folder_types]
**Step 2** (CLI execution):
- Agent substitutes [target_folders] into command
- Agent executes CLI command via Bash tool:
```bash
bash(cd src/modules && gemini --approval-mode yolo -p "
PURPOSE: Generate module documentation
TASK: Create API.md and README.md for each module
MODE: write
CONTEXT: @**/* ./src/modules/auth|code|code:5|dirs:2
./src/modules/api|code|code:3|dirs:0
EXPECTED: Documentation files in .workflow/docs/my_project/src/modules/
RULES: $(cat ~/.claude/workflows/cli-templates/prompts/documentation/module-documentation.txt) | Mirror source structure
")
```
4. **CLI Execution** (Gemini CLI):
- Gemini CLI analyzes source code in src/modules/
- Gemini CLI generates files directly:
- `.workflow/docs/my_project/src/modules/auth/API.md`
- `.workflow/docs/my_project/src/modules/auth/README.md`
- `.workflow/docs/my_project/src/modules/api/API.md`
- `.workflow/docs/my_project/src/modules/api/README.md`
5. **Agent Validation**:
```bash
# Verify all target files exist
bash(find .workflow/docs/my_project/src/modules -name "*.md" | wc -l)
# Expected: 4 files
# Check file content is not empty
bash(find .workflow/docs/my_project/src/modules -name "*.md" -exec wc -l {} \;)
```
6. **Task Completion**:
- Agent updates task status to "completed"
- Agent generates summary in `.summaries/IMPL-001-summary.md`
- Agent updates TODO_LIST.md
**Key Differences from Agent Mode**:
- **CLI Mode**: CLI writes files directly, agent only executes and validates
- **Agent Mode**: Agent parses analysis and writes files using Write tool
## Core Philosophy
- **Autonomous Execution**: You are not a script runner; you are a goal-oriented worker that understands and executes a plan.
- **Mode-Aware**: You adapt execution strategy based on `meta.cli_execute` mode (Agent Mode vs CLI Mode).
- **Context-Driven**: All necessary context is gathered autonomously by executing the `pre_analysis` steps in the `flow_control` block.
- **Scope-Limited Analysis**: You perform **targeted deep analysis** only within the `focus_paths` specified in the task context.
- **Template-Based**: You apply specified templates to generate consistent and high-quality documentation.
- **Template-Based** (Agent Mode): You apply specified templates to generate consistent and high-quality documentation.
- **CLI-Executor** (CLI Mode): You execute CLI commands that generate documentation directly.
- **Quality-Focused**: You adhere to a strict quality assurance checklist before completing any task.
## Documentation Quality Principles
### 1. Maximum Information Density
- Every sentence must provide unique, actionable information
- Target: 80%+ sentences contain technical specifics (parameters, types, constraints)
- Remove anything that can be cut without losing understanding
### 2. Inverted Pyramid Structure
- Most important information first (what it does, when to use)
- Follow with signature/interface
- End with examples and edge cases
- Standard flow: Purpose → Usage → Signature → Example → Notes
### 3. Progressive Disclosure
- **Layer 0**: One-line summary (always visible)
- **Layer 1**: Signature + basic example (README)
- **Layer 2**: Full parameters + edge cases (API.md)
- **Layer 3**: Implementation + architecture (ARCHITECTURE.md)
- Use cross-references instead of duplicating content
### 4. Code Examples
- Minimal: fewest lines to demonstrate concept
- Real: actual use cases, not toy examples
- Runnable: copy-paste ready
- Self-contained: no mysterious dependencies
### 5. Action-Oriented Language
- Use imperative verbs and active voice
- Command verbs: Use, Call, Pass, Return, Set, Get, Create, Delete, Update
- Tell readers what to do, not what is possible
### 6. Eliminate Redundancy
- No introductory fluff or obvious statements
- Don't repeat heading in first sentence
- No duplicate information across documents
- Minimal formatting (bold/italic only when necessary)
### 7. Document-Specific Guidelines
**API.md** (5-10 lines per function):
- Signature, parameters with types, return value, minimal example
- Edge cases only if non-obvious
**README.md** (30-100 lines):
- Purpose (1-2 sentences), when to use, quick start, link to API.md
- No architecture details (link to ARCHITECTURE.md)
**ARCHITECTURE.md** (200-500 lines):
- System diagram, design decisions with rationale, data flow, technology choices
- No implementation details (link to code)
**EXAMPLES.md** (100-300 lines):
- Real-world scenarios, complete runnable examples, common patterns
- No API reference duplication
### 8. Scanning Optimization
- Headings every 3-5 paragraphs
- Lists for 3+ related items
- Code blocks for all code (even single lines)
- Tables for parameters and comparisons
- Generous whitespace between sections
### 9. Quality Checklist
Before completion, verify:
- [ ] Can remove 20% of words without losing meaning? (If yes, do it)
- [ ] 80%+ sentences are technically specific?
- [ ] First paragraph answers "what" and "when"?
- [ ] Reader can find any info in <10 seconds?
- [ ] Most important info in first screen?
- [ ] Examples runnable without modification?
- [ ] No duplicate information across files?
- [ ] No empty or obvious statements?
- [ ] Headings alone convey the flow?
- [ ] All code blocks syntactically highlighted?
## Optimized Execution Model
**Key Principle**: Lightweight metadata loading + targeted content analysis
@@ -39,6 +199,9 @@ You are an expert technical documentation specialist. Your responsibility is to
### 1. Task Ingestion
- **Input**: A single task JSON file path.
- **Action**: Load and parse the task JSON. Validate the presence of `id`, `title`, `status`, `meta`, `context`, and `flow_control`.
- **Mode Detection**: Check `meta.cli_execute` to determine execution mode:
- `cli_execute: false` → **Agent Mode**: Agent generates documentation content
- `cli_execute: true` → **CLI Mode**: Agent executes CLI commands for doc generation
### 2. Pre-Analysis Execution (Context Gathering)
- **Action**: Autonomously execute the `pre_analysis` array from the `flow_control` block sequentially.
@@ -67,6 +230,7 @@ You are an expert technical documentation specialist. Your responsibility is to
### 3. Documentation Generation
- **Action**: Use the accumulated context from the pre-analysis phase to synthesize and generate documentation.
- **Mode Detection**: Check `meta.cli_execute` field to determine execution mode.
- **Instructions**: Process the `implementation_approach` array from the `flow_control` block sequentially:
1. **Array Structure**: `implementation_approach` is an array of step objects
2. **Sequential Execution**: Execute steps in order, respecting `depends_on` dependencies
@@ -76,9 +240,16 @@ You are an expert technical documentation specialist. Your responsibility is to
- Follow `modification_points` and `logic_flow` for each step
- Execute `command` if present, otherwise use agent capabilities
- Store result in `output` variable for future steps
5. **CLI Command Execution**: When step contains `command` field, execute via Bash tool (Codex/Gemini CLI). For Codex with dependencies, use `resume --last` flag.
- **Templates**: Apply templates as specified in `meta.template` or step-level templates.
- **Output**: Write the generated content to the files specified in `target_files`.
5. **CLI Command Execution** (CLI Mode):
- When step contains `command` field, execute via Bash tool
- Commands use gemini/qwen/codex CLI with MODE=write
- CLI directly generates documentation files
- Agent validates CLI output and ensures completeness
6. **Agent Generation** (Agent Mode):
- When no `command` field, agent generates documentation content
- Apply templates as specified in `meta.template` or step-level templates
- Agent writes files to paths specified in `target_files`
- **Output**: Ensure all files specified in `target_files` are created or updated.
### 4. Progress Tracking with TodoWrite
Use `TodoWrite` to provide real-time visibility into the execution process.
@@ -140,9 +311,13 @@ Before completing the task, you must verify the following:
## Key Reminders
**ALWAYS**:
- **Detect Mode**: Check `meta.cli_execute` to determine execution mode (Agent or CLI).
- **Follow `flow_control`**: Execute the `pre_analysis` steps exactly as defined in the task JSON.
- **Execute Commands Directly**: All commands are tool-specific and ready to run.
- **Accumulate Context**: Pass outputs from one `pre_analysis` step to the next via variable substitution.
- **Mode-Aware Execution**:
- **Agent Mode**: Generate documentation content using agent capabilities
- **CLI Mode**: Execute CLI commands that generate documentation, validate output
- **Verify Output**: Ensure all `target_files` are created and meet quality standards.
- **Update Progress**: Use `TodoWrite` to track each step of the execution.
- **Generate a Summary**: Create a detailed summary upon task completion.
@@ -151,4 +326,5 @@ Before completing the task, you must verify the following:
- **Make Planning Decisions**: Do not deviate from the instructions in the task JSON.
- **Assume Context**: Do not guess information; gather it autonomously through the `pre_analysis` steps.
- **Generate Code**: Your role is to document, not to implement.
- **Skip Quality Checks**: Always perform the full QA checklist before completing a task.
- **Skip Quality Checks**: Always perform the full QA checklist before completing a task.
- **Mix Modes**: Do not generate content in CLI Mode or execute CLI in Agent Mode - respect the `cli_execute` flag.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,132 @@
---
name: load-skill-memory
description: Manually activate specified SKILL package and load documentation based on task intent
argument-hint: "<skill_name> \"task intent description\""
allowed-tools: Bash(*), Read(*), Skill(*)
---
# Memory Load SKILL Command (/memory:load-skill-memory)
## 1. Overview
The `memory:load-skill-memory` command **manually activates a specified SKILL package** and intelligently loads documentation based on user's task intent. The system automatically determines which documentation files to read based on the intent description.
**Core Philosophy**:
- **Manual Activation**: User explicitly specifies which SKILL to activate
- **Intent-Driven Loading**: System analyzes task intent to determine documentation scope
- **Intelligent Selection**: Automatically chooses appropriate documentation level and modules
- **Direct Context Loading**: Loads selected documentation into conversation memory
**When to Use**:
- Manually activate a known SKILL package for a specific task
- Load SKILL context when system hasn't auto-triggered it
- Force reload SKILL documentation with specific intent focus
**Note**: Normal SKILL activation happens automatically via description triggers. Use this command only when manual activation is needed.
## 2. Parameters
- `<skill_name>` (Required): Name of SKILL package to activate
- Example: `hydro_generator_module`, `Claude_dms3`
- Must match directory name under `.claude/skills/`
- `"task intent description"` (Required): Description of what you want to do
- **Analysis tasks**: "分析builder pattern实现", "理解参数系统架构"
- **Modification tasks**: "修改workflow逻辑", "增强thermal template功能"
- **Learning tasks**: "学习接口设计模式", "了解测试框架使用"
## 3. Execution Flow
### Step 1: Activate SKILL and Analyze Intent
**Activate SKILL Package**:
```javascript
Skill(command: "${skill_name}")
```
**What Happens After Activation**:
1. If SKILL exists in memory: System reads `.claude/skills/${skill_name}/SKILL.md`
2. If SKILL not found in memory: Error - SKILL package doesn't exist
3. SKILL description triggers are loaded into memory
4. Progressive loading mechanism becomes available
5. Documentation structure is now accessible
**Intent Analysis**:
Based on task intent description, system determines:
- **Action type**: analyzing, modifying, learning
- **Scope**: specific module, architecture overview, complete system
- **Depth**: quick reference, detailed API, full documentation
### Step 2: Intelligent Documentation Loading
**Loading Strategy**:
The system automatically selects documentation based on intent keywords:
1. **Quick Understanding** ("了解", "快速理解", "什么是"):
- Load: Level 0 (README.md only, ~2K tokens)
- Use case: Quick overview of capabilities
2. **Specific Module Analysis** ("分析XXX模块", "理解XXX实现"):
- Load: Module-specific README.md + API.md (~5K tokens)
- Use case: Deep dive into specific component
3. **Architecture Review** ("架构", "设计模式", "整体结构"):
- Load: README.md + ARCHITECTURE.md (~10K tokens)
- Use case: System design understanding
4. **Implementation/Modification** ("修改", "增强", "实现"):
- Load: Relevant module docs + EXAMPLES.md (~15K tokens)
- Use case: Code modification with examples
5. **Comprehensive Learning** ("学习", "完整了解", "深入理解"):
- Load: Level 3 (All documentation, ~40K tokens)
- Use case: Complete system mastery
**Documentation Loaded into Memory**:
After loading, the selected documentation content is available in conversation memory for subsequent operations.
## 4. Usage Example
**User Command**:
```bash
/memory:load-skill-memory my_project "修改认证模块增加OAuth支持"
```
**Execution**:
```javascript
// Step 1: Activate SKILL
Skill(command: "my_project")
// Intent Analysis
Keywords: ["修改", "认证模块", "增加", "OAuth"]
Action: modifying (implementation)
Scope: auth module + examples
// Step 2: Load documentation based on intent
Read(.workflow/docs/my_project/auth/README.md)
Read(.workflow/docs/my_project/auth/API.md)
Read(.workflow/docs/my_project/EXAMPLES.md)
```
## 5. Intent Keyword Mapping
**Quick Reference**:
- **Triggers**: "了解", "快速", "什么是", "简介"
- **Loads**: README.md only (~2K)
**Module-Specific**:
- **Triggers**: "XXX模块", "XXX组件", "分析XXX"
- **Loads**: Module README + API (~5K)
**Architecture**:
- **Triggers**: "架构", "设计", "整体结构", "系统设计"
- **Loads**: README + ARCHITECTURE (~10K)
**Implementation**:
- **Triggers**: "修改", "增强", "实现", "开发", "集成"
- **Loads**: Relevant module + EXAMPLES (~15K)
**Comprehensive**:
- **Triggers**: "完整", "深入", "全面", "学习整个"
- **Loads**: All documentation (~40K)

View File

@@ -0,0 +1,466 @@
---
name: skill-memory
description: Generate SKILL package index from project documentation
argument-hint: "[path] [--tool <gemini|qwen|codex>] [--update] [--mode <full|partial>] [--cli-execute]"
allowed-tools: SlashCommand(*), TodoWrite(*), Bash(*), Read(*), Write(*)
---
# Memory SKILL Package Generator
## Orchestrator Role
**This command is a pure orchestrator**: Execute documentation generation workflow, then generate SKILL.md index. Does NOT create task JSON files.
**Execution Model - Auto-Continue Workflow**:
This workflow runs **fully autonomously** once triggered. Each phase completes and automatically triggers the next phase.
1. **User triggers**: `/memory:skill-memory [path] [options]`
2. **Phase 1 executes** → Parse arguments and prepare → Auto-continues
3. **Phase 2 executes** → Call `/memory:docs` to plan documentation → Auto-continues
4. **Phase 3 executes** → Call `/workflow:execute` to generate docs → Auto-continues
5. **Phase 4 executes** → Generate SKILL.md index → Reports completion
**Auto-Continue Mechanism**:
- TodoList tracks current phase status (in_progress/completed)
- After each phase completion, check TodoList and automatically execute next pending phase
- All phases run autonomously without user interaction
- Progress updates shown at each phase for visibility
- Each phase MUST update TodoWrite before triggering next phase
## Core Rules
1. **Start Immediately**: First action is TodoWrite initialization, second action is Phase 1 execution
2. **No Task JSON**: This command does not create task JSON files - delegates to /memory:docs
3. **Parse Every Output**: Extract required data from each command output (session_id, task_count, file paths)
4. **Auto-Continue via TodoList**: After completing each phase:
- Update TodoWrite to mark current phase completed
- Mark next phase as in_progress
- Immediately execute next phase (no waiting for user input)
- Check TodoList to identify next pending phase automatically
5. **Track Progress**: Update TodoWrite after EVERY phase completion before starting next phase
6. **Direct Generation**: Phase 4 directly generates SKILL.md using Write tool
7. **No Manual Steps**: User should never be prompted for decisions between phases - fully autonomous execution
## 4-Phase Execution
### Phase 1: Prepare Arguments
**Goal**: Parse command arguments and check existing documentation
**Step 1: Get Target Path and Project Name**
```bash
# Get current directory (or use provided path)
bash(pwd)
# Get project name from directory
bash(basename "$(pwd)")
# Get project root
bash(git rev-parse --show-toplevel 2>/dev/null || pwd)
```
**Output**:
- `target_path`: `/d/my_project`
- `project_name`: `my_project`
- `project_root`: `/d/my_project`
**Step 2: Set Default Parameters**
```bash
# Default values (use these unless user specifies otherwise):
# - tool: "gemini"
# - mode: "full"
# - update: false (no --update flag)
# - cli_execute: false (no --cli-execute flag)
```
**Step 3: Check Existing Documentation**
```bash
# Check if docs directory exists (replace project_name with actual value)
bash(test -d .workflow/docs/my_project && echo "exists" || echo "not_exists")
# Count existing documentation files
bash(find .workflow/docs/my_project -name "*.md" 2>/dev/null | wc -l || echo 0)
```
**Output**:
- `docs_exists`: `exists` or `not_exists`
- `existing_docs`: `5` (or `0` if no docs)
**Step 4: Handle --update Flag (If Specified)**
```bash
# If user specified --update, delete existing docs directory
bash(rm -rf .workflow/docs/my_project 2>/dev/null || true)
# Verify deletion
bash(test -d .workflow/docs/my_project && echo "still_exists" || echo "deleted")
```
**Summary**:
- `PROJECT_NAME`: `my_project`
- `TARGET_PATH`: `/d/my_project`
- `DOCS_PATH`: `.workflow/docs/my_project`
- `TOOL`: `gemini` (default) or user-specified
- `MODE`: `full` (default) or user-specified
- `CLI_EXECUTE`: `false` (default) or `true` if --cli-execute flag
- `UPDATE`: `false` (default) or `true` if --update flag
- `EXISTING_DOCS`: `0` (after update) or actual count
**Completion Criteria**:
- All parameters extracted and validated
- Project name and paths confirmed
- Existing docs count retrieved (or 0 after regenerate)
- Default values set for unspecified parameters
**TodoWrite**: Mark phase 1 completed, phase 2 in_progress
**After Phase 1**: Display preparation results → **Automatically continue to Phase 2** (no user input required)
---
### Phase 2: Call /memory:docs
**Goal**: Trigger documentation generation workflow
**Command**:
```bash
SlashCommand(command="/memory:docs [targetPath] --tool [tool] --mode [mode] [--cli-execute]")
```
**Example**:
```bash
/memory:docs /d/my_app --tool gemini --mode full
/memory:docs /d/my_app --tool gemini --mode full --cli-execute
```
**Note**: The `--update` flag is handled in Phase 1 by deleting existing documentation. This command always calls `/memory:docs` without the update flag, relying on docs.md's built-in update detection.
**Input**:
- `targetPath` from Phase 1
- `tool` from Phase 1
- `mode` from Phase 1
- `cli_execute` from Phase 1 (optional)
**Parse Output**:
- Extract session ID pattern: `WFS-docs-[timestamp]` (store as `docsSessionId`)
- Extract task count (store as `taskCount`)
**Completion Criteria**:
- `/memory:docs` command executed successfully
- Session ID extracted: `WFS-docs-[timestamp]`
- Task count retrieved from output
- Task files created in `.workflow/[docsSessionId]/.task/`
- workflow-session.json exists in session directory
**TodoWrite**: Mark phase 2 completed, phase 3 in_progress
**After Phase 2**: Display docs planning results (session ID, task count) → **Automatically continue to Phase 3** (no user input required)
---
### Phase 3: Execute Documentation Generation
**Goal**: Execute documentation generation tasks
**Command**:
```bash
SlashCommand(command="/workflow:execute")
```
**Note**: `/workflow:execute` automatically discovers active session from Phase 2
**Completion Criteria**:
- `/workflow:execute` command executed successfully
- Documentation files generated in `.workflow/docs/[projectName]/`
- All tasks marked as completed in session
- At minimum, module documentation files exist (API.md and/or README.md)
- For full mode: Project README, ARCHITECTURE, EXAMPLES files generated
**TodoWrite**: Mark phase 3 completed, phase 4 in_progress
**After Phase 3**: Display execution results (file count, module count) → **Automatically continue to Phase 4** (no user input required)
---
### Phase 4: Generate SKILL.md Index
**Step 1: Read Key Files** (Use Read tool)
- `.workflow/docs/{project_name}/README.md` (required)
- `.workflow/docs/{project_name}/ARCHITECTURE.md` (optional)
**Step 2: Discover Structure**
```bash
bash(find .workflow/docs/{project_name} -name "*.md" | sed 's|.workflow/docs/{project_name}/||' | awk -F'/' '{if(NF>=2) print $1"/"$2}' | sort -u)
```
**Step 3: Generate Intelligent Description**
Extract from README + structure: Function (capabilities), Modules (names), Keywords (API/CLI/auth/etc.)
**Format**: `{Project} {core capabilities} (located at {project_path}). Load this SKILL when analyzing, modifying, or learning about {domain_description} or files under this path, especially when no relevant context exists in memory.`
**Path Reference**: Use `TARGET_PATH` from Phase 1 for precise location identification.
**Domain Description**: Extract human-readable domain/feature area from README (e.g., "workflow management", "thermal modeling"), NOT the technical project_name.
**Trigger Optimization**:
- Include project path to improve triggering when users mention specific directories or file locations
- Emphasize "especially when no relevant context exists in memory" to prioritize SKILL as primary context source
- Cover three key actions: analyzing (分析), modifying (修改), learning (了解)
**Example**: "Workflow orchestration system with CLI tools and documentation generation (located at /d/Claude_dms3). Load this SKILL when analyzing, modifying, or learning about workflow management or files under this path, especially when no relevant context exists in memory."
**Step 4: Write SKILL.md** (Use Write tool)
```bash
bash(mkdir -p .claude/skills/{project_name})
```
`.claude/skills/{project_name}/SKILL.md`:
```yaml
---
name: {project_name}
description: {intelligent description from Step 3}
version: 1.0.0
---
# {Project Name} SKILL Package
## Documentation: `../../../.workflow/docs/{project_name}/`
## Progressive Loading
### Level 0: Quick Start (~2K)
- [README](../../../.workflow/docs/{project_name}/README.md)
### Level 1: Core Modules (~8K)
{Module READMEs}
### Level 2: Complete (~25K)
All modules + [Architecture](../../../.workflow/docs/{project_name}/ARCHITECTURE.md)
### Level 3: Deep Dive (~40K)
Everything + [Examples](../../../.workflow/docs/{project_name}/EXAMPLES.md)
```
**Completion Criteria**:
- SKILL.md file created at `.claude/skills/{project_name}/SKILL.md`
- Intelligent description generated from documentation
- Progressive loading levels (0-3) properly structured
- Module index includes all documented modules
- All file references use relative paths
**TodoWrite**: Mark phase 4 completed
**After Phase 4**: Workflow complete → **Report final summary to user**
**Return to User**:
```
✅ SKILL Package Generation Complete
Project: {project_name}
Documentation: .workflow/docs/{project_name}/ ({doc_count} files)
SKILL Index: .claude/skills/{project_name}/SKILL.md
Generated:
- {task_count} documentation tasks completed
- SKILL.md with progressive loading (4 levels)
- Module index with {module_count} modules
Usage:
- Load Level 0: Quick project overview (~2K tokens)
- Load Level 1: Core modules (~8K tokens)
- Load Level 2: Complete docs (~25K tokens)
- Load Level 3: Everything (~40K tokens)
```
---
## TodoWrite Pattern
**Auto-Continue Logic**: After updating TodoWrite at end of each phase, immediately check for next pending task and execute it.
```javascript
// Initialize (before Phase 1)
// FIRST ACTION: Create TodoList with all 4 phases
TodoWrite({todos: [
{"content": "Parse arguments and prepare", "status": "in_progress", "activeForm": "Parsing arguments"},
{"content": "Call /memory:docs to plan documentation", "status": "pending", "activeForm": "Calling /memory:docs"},
{"content": "Execute documentation generation", "status": "pending", "activeForm": "Executing documentation"},
{"content": "Generate SKILL.md index", "status": "pending", "activeForm": "Generating SKILL.md"}
]})
// SECOND ACTION: Execute Phase 1 immediately
// After Phase 1 completes
// Update TodoWrite: Mark Phase 1 completed, Phase 2 in_progress
TodoWrite({todos: [
{"content": "Parse arguments and prepare", "status": "completed", "activeForm": "Parsing arguments"},
{"content": "Call /memory:docs to plan documentation", "status": "in_progress", "activeForm": "Calling /memory:docs"},
{"content": "Execute documentation generation", "status": "pending", "activeForm": "Executing documentation"},
{"content": "Generate SKILL.md index", "status": "pending", "activeForm": "Generating SKILL.md"}
]})
// NEXT ACTION: Auto-continue to Phase 2 (execute /memory:docs command)
// After Phase 2 completes
// Update TodoWrite: Mark Phase 2 completed, Phase 3 in_progress
TodoWrite({todos: [
{"content": "Parse arguments and prepare", "status": "completed", "activeForm": "Parsing arguments"},
{"content": "Call /memory:docs to plan documentation", "status": "completed", "activeForm": "Calling /memory:docs"},
{"content": "Execute documentation generation", "status": "in_progress", "activeForm": "Executing documentation"},
{"content": "Generate SKILL.md index", "status": "pending", "activeForm": "Generating SKILL.md"}
]})
// NEXT ACTION: Auto-continue to Phase 3 (execute /workflow:execute command)
// After Phase 3 completes
// Update TodoWrite: Mark Phase 3 completed, Phase 4 in_progress
TodoWrite({todos: [
{"content": "Parse arguments and prepare", "status": "completed", "activeForm": "Parsing arguments"},
{"content": "Call /memory:docs to plan documentation", "status": "completed", "activeForm": "Calling /memory:docs"},
{"content": "Execute documentation generation", "status": "completed", "activeForm": "Executing documentation"},
{"content": "Generate SKILL.md index", "status": "in_progress", "activeForm": "Generating SKILL.md"}
]})
// NEXT ACTION: Auto-continue to Phase 4 (generate SKILL.md)
// After Phase 4 completes
// Update TodoWrite: Mark Phase 4 completed
TodoWrite({todos: [
{"content": "Parse arguments and prepare", "status": "completed", "activeForm": "Parsing arguments"},
{"content": "Call /memory:docs to plan documentation", "status": "completed", "activeForm": "Calling /memory:docs"},
{"content": "Execute documentation generation", "status": "completed", "activeForm": "Executing documentation"},
{"content": "Generate SKILL.md index", "status": "completed", "activeForm": "Generating SKILL.md"}
]})
// FINAL ACTION: Report completion summary to user
```
## Auto-Continue Execution Flow
**Critical Implementation Rules**:
1. **No User Prompts Between Phases**: Never ask user questions or wait for input between phases
2. **Immediate Phase Transition**: After TodoWrite update, immediately execute next phase command
3. **Status-Driven Execution**: Check TodoList status after each phase:
- If next task is "pending" → Mark it "in_progress" and execute
- If all tasks are "completed" → Report final summary
4. **Phase Completion Pattern**:
```
Phase N completes → Update TodoWrite (N=completed, N+1=in_progress) → Execute Phase N+1
```
**Execution Sequence**:
```
User triggers command
[TodoWrite] Initialize 4 phases (Phase 1 = in_progress)
[Execute] Phase 1: Parse arguments
[TodoWrite] Phase 1 = completed, Phase 2 = in_progress
[Execute] Phase 2: Call /memory:docs
[TodoWrite] Phase 2 = completed, Phase 3 = in_progress
[Execute] Phase 3: Call /workflow:execute
[TodoWrite] Phase 3 = completed, Phase 4 = in_progress
[Execute] Phase 4: Generate SKILL.md
[TodoWrite] Phase 4 = completed
[Report] Display completion summary
```
**Error Handling**:
- If any phase fails, mark it as "in_progress" (not completed)
- Report error details to user
- Do NOT auto-continue to next phase on failure
---
## Parameters
```bash
/memory:skill-memory [path] [--tool <gemini|qwen|codex>] [--update] [--mode <full|partial>] [--cli-execute]
```
- **path**: Target directory (default: current directory)
- **--tool**: CLI tool for documentation (default: gemini)
- `gemini`: Comprehensive documentation
- `qwen`: Architecture analysis
- `codex`: Implementation validation
- **--update**: Force update all documentation
- When enabled: Deletes existing `.workflow/docs/{project_name}/` before regeneration
- Ensures fresh documentation from source code
- **--mode**: Documentation mode (default: full)
- `full`: Complete docs (modules + README + ARCHITECTURE + EXAMPLES)
- `partial`: Module docs only
- **--cli-execute**: Enable CLI-based documentation generation (optional)
- When enabled: CLI generates docs directly in implementation_approach
- When disabled (default): Agent generates documentation content
## Examples
### Example 1: Generate SKILL Package (Default)
```bash
/memory:skill-memory
```
**Workflow**:
1. Phase 1: Detects current directory, checks existing docs
2. Phase 2: Calls `/memory:docs . --tool gemini --mode full` (Agent Mode)
3. Phase 3: Executes documentation generation via `/workflow:execute`
4. Phase 4: Generates SKILL.md at `.claude/skills/{project_name}/SKILL.md`
### Example 2: Update with Qwen
```bash
/memory:skill-memory /d/my_app --tool qwen --update
```
**Workflow**:
1. Phase 1: Parses target path, detects update flag
2. Phase 2: Calls `/memory:docs /d/my_app --tool qwen --mode full` (update handled in Phase 1)
3. Phase 3: Executes documentation update
4. Phase 4: Generates updated SKILL.md
### Example 3: Partial Mode (Modules Only)
```bash
/memory:skill-memory --mode partial
```
**Workflow**:
1. Phase 1: Detects partial mode
2. Phase 2: Calls `/memory:docs . --tool gemini --mode partial` (Agent Mode)
3. Phase 3: Executes module documentation only
4. Phase 4: Generates SKILL.md with module-only index
### Example 4: CLI Execute Mode
```bash
/memory:skill-memory --cli-execute
```
**Workflow**:
1. Phase 1: Detects CLI execute mode
2. Phase 2: Calls `/memory:docs . --tool gemini --mode full --cli-execute` (CLI Mode)
3. Phase 3: Executes CLI-based documentation generation
4. Phase 4: Generates SKILL.md at `.claude/skills/{project_name}/SKILL.md`
## Benefits
- ✅ **Pure Orchestrator**: No task JSON generation, delegates to /memory:docs
- ✅ **Auto-Continue**: Autonomous 4-phase execution
- ✅ **Simplified**: ~70% less code than previous version
- ✅ **Maintainable**: Changes to /memory:docs automatically apply
- ✅ **Direct Generation**: Phase 4 directly writes SKILL.md
- ✅ **Flexible**: Supports all /memory:docs options
## Architecture
```
skill-memory (orchestrator)
├─ Phase 1: Prepare (bash commands)
├─ Phase 2: /memory:docs (task planning)
├─ Phase 3: /workflow:execute (task execution)
└─ Phase 4: Write SKILL.md (direct file generation)
No task JSON created by this command
All documentation tasks managed by /memory:docs
```

View File

@@ -447,7 +447,7 @@ bash(codex -C directory --full-auto exec "task") # Complex implementation: 90-1
#### Write Operation Protection
**⚠️ WRITE PROTECTION**: Local codebase write/modify requires EXPLICIT user confirmation
**⚠️ CRITICAL: Single-Use Explicit Authorization**: Each CLI execution (Gemini/Qwen/Codex) requires explicit user command instruction - one command authorizes ONE execution only. Analysis does NOT authorize write operations. Previous authorization does NOT carry over to subsequent actions. Each operation needs NEW explicit user directive.
**Mode Hierarchy**:
- **Analysis Mode (default)**: Read-only, safe for auto-execution

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
<div align="center">
[![Version](https://img.shields.io/badge/version-v5.0.0-blue.svg)](https://github.com/catlog22/Claude-Code-Workflow/releases)
[![Version](https://img.shields.io/badge/version-v5.2.0-blue.svg)](https://github.com/catlog22/Claude-Code-Workflow/releases)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
[![Platform](https://img.shields.io/badge/platform-Windows%20%7C%20Linux%20%7C%20macOS-lightgrey.svg)]()
@@ -14,12 +14,13 @@
**Claude Code Workflow (CCW)** transforms AI development from simple prompt chaining into a robust, context-first orchestration system. It solves execution uncertainty and error accumulation through structured planning, deterministic execution, and intelligent multi-model orchestration.
> **🎉 Version 5.0: Less is More**
> **🎉 Version 5.2: Memory Commands Enhancement**
>
> **Core Improvements**:
> - ✅ **Removed External Dependencies** - Using standard ripgrep/find instead of MCP code-index for better stability
> - ✅ **Streamlined Workflows** - Enhanced TDD workflow with conflict resolution mechanism
> - ✅ **Focused on Role Analysis** - Simplified planning architecture centered on role documents
> - ✅ **Batch Processing** - Single Level 1 task handles all module trees (67% fewer tasks)
> - ✅ **Dual Execution Modes** - Agent Mode and CLI Mode (--cli-execute) support
> - ✅ **Pre-computed Analysis** - Unified analysis eliminates redundant CLI calls (67% reduction)
> - ✅ **Performance Boost** - 67% fewer file reads, 33% fewer total tasks
>
> See [CHANGELOG.md](CHANGELOG.md) for full details.

View File

@@ -2,7 +2,7 @@
<div align="center">
[![Version](https://img.shields.io/badge/version-v5.0.0-blue.svg)](https://github.com/catlog22/Claude-Code-Workflow/releases)
[![Version](https://img.shields.io/badge/version-v5.2.0-blue.svg)](https://github.com/catlog22/Claude-Code-Workflow/releases)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
[![Platform](https://img.shields.io/badge/platform-Windows%20%7C%20Linux%20%7C%20macOS-lightgrey.svg)]()
@@ -14,12 +14,13 @@
**Claude Code Workflow (CCW)** 将 AI 开发从简单的提示词链接转变为一个强大的、上下文优先的编排系统。它通过结构化规划、确定性执行和智能多模型编排,解决了执行不确定性和误差累积的问题。
> **🎉 版本 5.0: 少即是多**
> **🎉 版本 5.2: 内存命令增强**
>
> **核心改进**:
> - ✅ **移除外部依赖** - 使用标准 ripgrep/find 替代 MCP code-index提升稳定性
> - ✅ **简化工作流** - 优化 TDD 流程,引入冲突解决机制
> - ✅ **专注角色分析** - 以角色文档为核心,简化规划架构
> - ✅ **批量处理** - 单个 Level 1 任务处理所有模块树(减少 67% 任务)
> - ✅ **双执行模式** - 支持 Agent 模式和 CLI 模式(--cli-execute
> - ✅ **预计算分析** - 统一分析消除冗余 CLI 调用(减少 67%
> - ✅ **性能提升** - 文件读取减少 67%,总任务数减少 33%
>
> 详见 [CHANGELOG.md](CHANGELOG.md)。