18 KiB
name, description, argument-hint, examples, allowed-tools
| name | description | argument-hint | examples | allowed-tools | |||
|---|---|---|---|---|---|---|---|
| gather | Intelligently collect project context using context-search-agent based on task description, packages into standardized JSON | --session WFS-session-id "task description" |
|
Task(*), Read(*), Glob(*) |
Context Gather Command (/workflow:tools:context-gather)
Overview
Orchestrator command that invokes context-search-agent to gather comprehensive project context for implementation planning. Generates standardized context-package.json with codebase analysis, dependencies, and conflict detection.
Core Philosophy
- Agent Delegation: Delegate all discovery to
context-search-agentfor autonomous execution - Detection-First: Check for existing context-package before executing
- Plan Mode: Full comprehensive analysis (vs lightweight brainstorm mode)
- Standardized Output: Generate
.workflow/active/{session}/.process/context-package.json
Execution Process
Input Parsing:
├─ Parse flags: --session
└─ Parse: task_description (required)
Step 1: Context-Package Detection
└─ Decision (existing package):
├─ Valid package exists → Return existing (skip execution)
└─ No valid package → Continue to Step 2
Step 2: Complexity Assessment & Parallel Explore
├─ Analyze task_description → classify Low/Medium/High
├─ Select exploration angles (1-4 based on complexity)
├─ Launch N cli-explore-agents in parallel
│ └─ Each outputs: exploration-{angle}.json
└─ Generate explorations-manifest.json
Step 3: Invoke Context-Search Agent (with exploration input)
├─ Phase 1: Initialization & Pre-Analysis
├─ Phase 2: Multi-Source Discovery
│ ├─ Track 0: Exploration Synthesis (prioritize & deduplicate)
│ ├─ Track 1-4: Existing tracks
└─ Phase 3: Synthesis & Packaging
└─ Generate context-package.json with exploration_results
Step 4: Output Verification
└─ Verify context-package.json contains exploration_results
Execution Flow
Step 1: Context-Package Detection
Execute First - Check if valid package already exists:
const contextPackagePath = `.workflow/${session_id}/.process/context-package.json`;
if (file_exists(contextPackagePath)) {
const existing = Read(contextPackagePath);
// Validate package belongs to current session
if (existing?.metadata?.session_id === session_id) {
console.log("✅ Valid context-package found for session:", session_id);
console.log("📊 Stats:", existing.statistics);
console.log("⚠️ Conflict Risk:", existing.conflict_detection.risk_level);
return existing; // Skip execution, return existing
} else {
console.warn("⚠️ Invalid session_id in existing package, re-generating...");
}
}
Step 2: Complexity Assessment & Parallel Explore
Only execute if Step 1 finds no valid package
// 2.1 Complexity Assessment
function analyzeTaskComplexity(taskDescription) {
const text = taskDescription.toLowerCase();
if (/architect|refactor|restructure|modular|cross-module/.test(text)) return 'High';
if (/multiple|several|integrate|migrate|extend/.test(text)) return 'Medium';
return 'Low';
}
const ANGLE_PRESETS = {
architecture: ['architecture', 'dependencies', 'modularity', 'integration-points'],
security: ['security', 'auth-patterns', 'dataflow', 'validation'],
performance: ['performance', 'bottlenecks', 'caching', 'data-access'],
bugfix: ['error-handling', 'dataflow', 'state-management', 'edge-cases'],
feature: ['patterns', 'integration-points', 'testing', 'dependencies'],
refactor: ['architecture', 'patterns', 'dependencies', 'testing']
};
function selectAngles(taskDescription, complexity) {
const text = taskDescription.toLowerCase();
let preset = 'feature';
if (/refactor|architect|restructure/.test(text)) preset = 'architecture';
else if (/security|auth|permission/.test(text)) preset = 'security';
else if (/performance|slow|optimi/.test(text)) preset = 'performance';
else if (/fix|bug|error|issue/.test(text)) preset = 'bugfix';
const count = complexity === 'High' ? 4 : (complexity === 'Medium' ? 3 : 1);
return ANGLE_PRESETS[preset].slice(0, count);
}
const complexity = analyzeTaskComplexity(task_description);
const selectedAngles = selectAngles(task_description, complexity);
const sessionFolder = `.workflow/active/${session_id}/.process`;
// 2.2 Launch Parallel Explore Agents
const explorationTasks = selectedAngles.map((angle, index) =>
Task(
subagent_type="cli-explore-agent",
run_in_background=false,
description=`Explore: ${angle}`,
prompt=`
## Task Objective
Execute **${angle}** exploration for task planning context. Analyze codebase from this specific angle to discover relevant structure, patterns, and constraints.
## Assigned Context
- **Exploration Angle**: ${angle}
- **Task Description**: ${task_description}
- **Session ID**: ${session_id}
- **Exploration Index**: ${index + 1} of ${selectedAngles.length}
- **Output File**: ${sessionFolder}/exploration-${angle}.json
## MANDATORY FIRST STEPS (Execute by Agent)
**You (cli-explore-agent) MUST execute these steps in order:**
1. Run: ccw tool exec get_modules_by_depth '{}' (project structure)
2. Run: rg -l "{keyword_from_task}" --type ts (locate relevant files)
3. Execute: cat ~/.ccw/workflows/cli-templates/schemas/explore-json-schema.json (get output schema reference)
## Exploration Strategy (${angle} focus)
**Step 1: Structural Scan** (Bash)
- get_modules_by_depth.sh → identify modules related to ${angle}
- find/rg → locate files relevant to ${angle} aspect
- Analyze imports/dependencies from ${angle} perspective
**Step 2: Semantic Analysis** (Gemini CLI)
- How does existing code handle ${angle} concerns?
- What patterns are used for ${angle}?
- Where would new code integrate from ${angle} viewpoint?
**Step 3: Write Output**
- Consolidate ${angle} findings into JSON
- Identify ${angle}-specific clarification needs
## Expected Output
**File**: ${sessionFolder}/exploration-${angle}.json
**Schema Reference**: Schema obtained in MANDATORY FIRST STEPS step 3, follow schema exactly
**Required Fields** (all ${angle} focused):
- project_structure: Modules/architecture relevant to ${angle}
- relevant_files: Files affected from ${angle} perspective
**IMPORTANT**: Use object format with relevance scores for synthesis:
\`[{path: "src/file.ts", relevance: 0.85, rationale: "Core ${angle} logic"}]\`
Scores: 0.7+ high priority, 0.5-0.7 medium, <0.5 low
- patterns: ${angle}-related patterns to follow
- dependencies: Dependencies relevant to ${angle}
- integration_points: Where to integrate from ${angle} viewpoint (include file:line locations)
- constraints: ${angle}-specific limitations/conventions
- clarification_needs: ${angle}-related ambiguities (options array + recommended index)
- _metadata.exploration_angle: "${angle}"
## Success Criteria
- [ ] Schema obtained via cat explore-json-schema.json
- [ ] get_modules_by_depth.sh executed
- [ ] At least 3 relevant files identified with ${angle} rationale
- [ ] Patterns are actionable (code examples, not generic advice)
- [ ] Integration points include file:line locations
- [ ] Constraints are project-specific to ${angle}
- [ ] JSON output follows schema exactly
- [ ] clarification_needs includes options + recommended
## Output
Write: ${sessionFolder}/exploration-${angle}.json
Return: 2-3 sentence summary of ${angle} findings
`
)
);
// 2.3 Generate Manifest after all complete
const explorationFiles = bash(`find ${sessionFolder} -name "exploration-*.json" -type f`).split('\n').filter(f => f.trim());
const explorationManifest = {
session_id,
task_description,
timestamp: new Date().toISOString(),
complexity,
exploration_count: selectedAngles.length,
angles_explored: selectedAngles,
explorations: explorationFiles.map(file => {
const data = JSON.parse(Read(file));
return { angle: data._metadata.exploration_angle, file: file.split('/').pop(), path: file, index: data._metadata.exploration_index };
})
};
Write(`${sessionFolder}/explorations-manifest.json`, JSON.stringify(explorationManifest, null, 2));
Step 3: Invoke Context-Search Agent
Only execute after Step 2 completes
// Load user intent from planning-notes.md (from Phase 1)
const planningNotesPath = `.workflow/active/${session_id}/planning-notes.md`;
let userIntent = { goal: task_description, key_constraints: "None specified" };
if (file_exists(planningNotesPath)) {
const notesContent = Read(planningNotesPath);
const goalMatch = notesContent.match(/\*\*GOAL\*\*:\s*(.+)/);
const constraintsMatch = notesContent.match(/\*\*KEY_CONSTRAINTS\*\*:\s*(.+)/);
if (goalMatch) userIntent.goal = goalMatch[1].trim();
if (constraintsMatch) userIntent.key_constraints = constraintsMatch[1].trim();
}
Task(
subagent_type="context-search-agent",
run_in_background=false,
description="Gather comprehensive context for plan",
prompt=`
## Execution Mode
**PLAN MODE** (Comprehensive) - Full Phase 1-3 execution with priority sorting
## Session Information
- **Session ID**: ${session_id}
- **Task Description**: ${task_description}
- **Output Path**: .workflow/${session_id}/.process/context-package.json
## User Intent (from Phase 1 - Planning Notes)
**GOAL**: ${userIntent.goal}
**KEY_CONSTRAINTS**: ${userIntent.key_constraints}
This is the PRIMARY context source - all subsequent analysis must align with user intent.
## Exploration Input (from Step 2)
- **Manifest**: ${sessionFolder}/explorations-manifest.json
- **Exploration Count**: ${explorationManifest.exploration_count}
- **Angles**: ${explorationManifest.angles_explored.join(', ')}
- **Complexity**: ${complexity}
## Mission
Execute complete context-search-agent workflow for implementation planning:
### Phase 1: Initialization & Pre-Analysis
1. **Project State Loading**:
- Read and parse `.workflow/project-tech.json`. Use its `overview` section as the foundational `project_context`. This is your primary source for architecture, tech stack, and key components.
- Read and parse `.workflow/project-guidelines.json`. Load `conventions`, `constraints`, and `learnings` into a `project_guidelines` section.
- If files don't exist, proceed with fresh analysis.
2. **Detection**: Check for existing context-package (early exit if valid)
3. **Foundation**: Initialize CodexLens, get project structure, load docs
4. **Analysis**: Extract keywords, determine scope, classify complexity based on task description and project state
### Phase 2: Multi-Source Context Discovery
Execute all discovery tracks (WITH USER INTENT INTEGRATION):
- **Track -1**: User Intent & Priority Foundation (EXECUTE FIRST)
- Load user intent (GOAL, KEY_CONSTRAINTS) from session input
- Map user requirements to codebase entities (files, modules, patterns)
- Establish baseline priority scores based on user goal alignment
- Output: user_intent_mapping.json with preliminary priority scores
- **Track 0**: Exploration Synthesis (load ${sessionFolder}/explorations-manifest.json, prioritize critical_files, deduplicate patterns/integration_points)
- **Track 1**: Historical archive analysis (query manifest.json for lessons learned)
- **Track 2**: Reference documentation (CLAUDE.md, architecture docs)
- **Track 3**: Web examples (use Exa MCP for unfamiliar tech/APIs)
- **Track 4**: Codebase analysis (5-layer discovery: files, content, patterns, deps, config/tests)
### Phase 3: Synthesis, Assessment & Packaging
1. Apply relevance scoring and build dependency graph
2. **Synthesize 5-source data** (including Track -1): Merge findings from all sources
- Priority order: User Intent > Archive > Docs > Exploration > Code > Web
- **Prioritize the context from `project-tech.json`** for architecture and tech stack unless code analysis reveals it's outdated
3. **Context Priority Sorting**:
a. Combine scores from Track -1 (user intent alignment) + relevance scores + exploration critical_files
b. Classify files into priority tiers:
- **Critical** (score ≥ 0.85): Directly mentioned in user goal OR exploration critical_files
- **High** (0.70-0.84): Key dependencies, patterns required for goal
- **Medium** (0.50-0.69): Supporting files, indirect dependencies
- **Low** (< 0.50): Contextual awareness only
c. Generate dependency_order: Based on dependency graph + user goal sequence
d. Document sorting_rationale: Explain prioritization logic
4. **Populate `project_context`**: Directly use the `overview` from `project-tech.json` to fill the `project_context` section. Include description, technology_stack, architecture, and key_components.
5. **Populate `project_guidelines`**: Load conventions, constraints, and learnings from `project-guidelines.json` into a dedicated section.
6. Integrate brainstorm artifacts (if .brainstorming/ exists, read content)
7. Perform conflict detection with risk assessment
8. **Inject historical conflicts** from archive analysis into conflict_detection
9. **Generate prioritized_context section**:
```json
{
"prioritized_context": {
"user_intent": {
"goal": "...",
"scope": "...",
"key_constraints": ["..."]
},
"priority_tiers": {
"critical": [{ "path": "...", "relevance": 0.95, "rationale": "..." }],
"high": [...],
"medium": [...],
"low": [...]
},
"dependency_order": ["module1", "module2", "module3"],
"sorting_rationale": "Based on user goal alignment (Track -1), exploration critical files, and dependency graph analysis"
}
}
- Generate and validate context-package.json with prioritized_context field
Output Requirements
Complete context-package.json with:
- metadata: task_description, keywords, complexity, tech_stack, session_id
- project_context: description, technology_stack, architecture, key_components (sourced from
project-tech.json) - project_guidelines: {conventions, constraints, quality_rules, learnings} (sourced from
project-guidelines.json) - assets: {documentation[], source_code[], config[], tests[]} with relevance scores
- dependencies: {internal[], external[]} with dependency graph
- brainstorm_artifacts: {guidance_specification, role_analyses[], synthesis_output} with content
- conflict_detection: {risk_level, risk_factors, affected_modules[], mitigation_strategy, historical_conflicts[]}
- exploration_results: {manifest_path, exploration_count, angles, explorations[], aggregated_insights} (from Track 0)
- prioritized_context: {user_intent, priority_tiers{critical, high, medium, low}, dependency_order[], sorting_rationale}
Quality Validation
Before completion verify:
- Valid JSON format with all required fields
- File relevance accuracy >80%
- Dependency graph complete (max 2 transitive levels)
- Conflict risk level calculated correctly
- No sensitive data exposed
- Total files ≤50 (prioritize high-relevance)
Planning Notes Record (REQUIRED)
After completing context-package.json, append a brief execution record to planning-notes.md:
File: .workflow/active/${session_id}/planning-notes.md Location: Under "## Context Findings (Phase 2)" section Format: ```
[Context-Search Agent] YYYY-MM-DD
- Note: [智能补充:简短总结关键发现,如探索角度、关键文件、冲突风险等] ```
Execute autonomously following agent documentation. Report completion with statistics. ` )
### Step 4: Output Verification
After agent completes, verify output:
```javascript
// Verify file was created
const outputPath = `.workflow/${session_id}/.process/context-package.json`;
if (!file_exists(outputPath)) {
throw new Error("❌ Agent failed to generate context-package.json");
}
// Verify exploration_results included
const pkg = JSON.parse(Read(outputPath));
if (pkg.exploration_results?.exploration_count > 0) {
console.log(`✅ Exploration results aggregated: ${pkg.exploration_results.exploration_count} angles`);
}
Parameter Reference
| Parameter | Type | Required | Description |
|---|---|---|---|
--session |
string | ✅ | Workflow session ID (e.g., WFS-user-auth) |
task_description |
string | ✅ | Detailed task description for context extraction |
Output Schema
Refer to context-search-agent.md Phase 3.7 for complete context-package.json schema.
Key Sections:
- metadata: Session info, keywords, complexity, tech stack
- project_context: Architecture patterns, conventions, tech stack (populated from
project-tech.json) - project_guidelines: Conventions, constraints, quality rules, learnings (populated from
project-guidelines.json) - assets: Categorized files with relevance scores (documentation, source_code, config, tests)
- dependencies: Internal and external dependency graphs
- brainstorm_artifacts: Brainstorm documents with full content (if exists)
- conflict_detection: Risk assessment with mitigation strategies and historical conflicts
- exploration_results: Aggregated exploration insights (from parallel explore phase)
- prioritized_context: Pre-sorted context with user intent and priority tiers (critical/high/medium/low)
Notes
- Detection-first: Always check for existing package before invoking agent
- User intent integration: Load user intent from planning-notes.md (Phase 1 output)
- Output: Generates
context-package.jsonwithprioritized_contextfield - Plan-specific: Use this for implementation planning; brainstorm mode uses direct agent call