Files
Claude-Code-Workflow/.claude/skills/skill-tuning/phases/actions/action-analyze-requirements.md
catlog22 266f6f11ec feat: Enhance documentation diagnosis and category mapping
- Introduced action to diagnose documentation structure, identifying redundancies and conflicts.
- Added centralized category mappings in JSON format for improved detection and strategy application.
- Updated existing functions to utilize new mappings for taxonomy and strategy matching.
- Implemented new detection patterns for documentation redundancy and conflict.
- Expanded state schema to include documentation diagnosis results.
- Enhanced severity criteria and strategy selection guide to accommodate new documentation issues.
2026-01-14 21:07:52 +08:00

407 lines
11 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Action: Analyze Requirements
将用户问题描述拆解为多个分析维度,匹配 Spec评估覆盖度检测歧义。
## Purpose
- 将单一用户描述拆解为多个独立关注维度
- 为每个维度匹配 problem-taxonomy检测+ tuning-strategies修复
- 以"有修复策略"为标准判断是否满足需求
- 检测歧义并在必要时请求用户澄清
## Preconditions
- [ ] `state.status === 'running'`
- [ ] `state.target_skill !== null`
- [ ] `state.completed_actions.includes('action-init')`
- [ ] `!state.completed_actions.includes('action-analyze-requirements')`
## Execution
### Phase 1: 维度拆解 (Gemini CLI)
调用 Gemini 对用户描述进行语义分析,拆解为独立维度:
```javascript
async function analyzeDimensions(state, workDir) {
const prompt = `
PURPOSE: 分析用户问题描述,拆解为独立的关注维度
TASK:
• 识别用户描述中的多个关注点(每个关注点应该是独立的、可单独分析的)
• 为每个关注点提取关键词(中英文均可)
• 推断可能的问题类别:
- context_explosion: 上下文/Token 相关
- memory_loss: 遗忘/约束丢失相关
- dataflow_break: 状态/数据流相关
- agent_failure: Agent/子任务相关
- prompt_quality: 提示词/输出质量相关
- architecture: 架构/结构相关
- performance: 性能/效率相关
- error_handling: 错误/异常处理相关
- output_quality: 输出质量/验证相关
- user_experience: 交互/体验相关
• 评估推断置信度 (0-1)
INPUT:
User description: ${state.user_issue_description}
Target skill: ${state.target_skill.name}
Skill structure: ${JSON.stringify(state.target_skill.phases)}
MODE: analysis
CONTEXT: @specs/problem-taxonomy.md @specs/dimension-mapping.md
EXPECTED: JSON (不要包含 markdown 代码块标记)
{
"dimensions": [
{
"id": "DIM-001",
"description": "关注点的简短描述",
"keywords": ["关键词1", "关键词2"],
"inferred_category": "问题类别",
"confidence": 0.85,
"reasoning": "推断理由"
}
],
"analysis_notes": "整体分析说明"
}
RULES:
- 每个维度必须独立,不重叠
- 低于 0.5 置信度的推断应标注需要澄清
- 如果用户描述非常模糊,至少提取一个 "general" 维度
`;
const cliCommand = `ccw cli -p "${escapeForShell(prompt)}" --tool gemini --mode analysis --cd "${state.target_skill.path}"`;
console.log('Phase 1: 执行 Gemini 维度拆解分析...');
const result = Bash({
command: cliCommand,
run_in_background: true,
timeout: 300000
});
return result;
}
```
### Phase 2: Spec 匹配
基于 `specs/category-mappings.json` 配置为每个维度匹配检测模式和修复策略:
```javascript
// 加载集中式映射配置
const mappings = JSON.parse(Read('specs/category-mappings.json'));
function matchSpecs(dimensions) {
return dimensions.map(dim => {
// 匹配 taxonomy pattern
const taxonomyMatch = findTaxonomyMatch(dim.inferred_category);
// 匹配 strategy
const strategyMatch = findStrategyMatch(dim.inferred_category);
// 判断是否满足(核心标准:有修复策略)
const hasFix = strategyMatch !== null && strategyMatch.strategies.length > 0;
return {
dimension_id: dim.id,
taxonomy_match: taxonomyMatch,
strategy_match: strategyMatch,
has_fix: hasFix,
needs_gemini_analysis: taxonomyMatch === null || mappings.categories[dim.inferred_category]?.needs_gemini_analysis
};
});
}
function findTaxonomyMatch(category) {
const config = mappings.categories[category];
if (!config || config.pattern_ids.length === 0) return null;
return {
category: category,
pattern_ids: config.pattern_ids,
severity_hint: config.severity_hint
};
}
function findStrategyMatch(category) {
const config = mappings.categories[category];
if (!config) {
// Fallback to custom from config
return mappings.fallback;
}
return {
strategies: config.strategies,
risk_levels: config.risk_levels
};
}
```
### Phase 3: 覆盖度评估
评估所有维度的 Spec 覆盖情况:
```javascript
function evaluateCoverage(specMatches) {
const total = specMatches.length;
const withDetection = specMatches.filter(m => m.taxonomy_match !== null).length;
const withFix = specMatches.filter(m => m.has_fix).length;
const rate = total > 0 ? Math.round((withFix / total) * 100) : 0;
let status;
if (rate >= 80) {
status = 'satisfied';
} else if (rate >= 50) {
status = 'partial';
} else {
status = 'unsatisfied';
}
return {
total_dimensions: total,
with_detection: withDetection,
with_fix_strategy: withFix,
coverage_rate: rate,
status: status
};
}
```
### Phase 4: 歧义检测
识别需要用户澄清的歧义点:
```javascript
function detectAmbiguities(dimensions, specMatches) {
const ambiguities = [];
for (const dim of dimensions) {
const match = specMatches.find(m => m.dimension_id === dim.id);
// 检测1: 低置信度 (< 0.5)
if (dim.confidence < 0.5) {
ambiguities.push({
dimension_id: dim.id,
type: 'vague_description',
description: `维度 "${dim.description}" 描述模糊,推断置信度低 (${dim.confidence})`,
possible_interpretations: suggestInterpretations(dim),
needs_clarification: true
});
}
// 检测2: 无匹配类别
if (!match || (!match.taxonomy_match && !match.strategy_match)) {
ambiguities.push({
dimension_id: dim.id,
type: 'no_category_match',
description: `维度 "${dim.description}" 无法匹配到已知问题类别`,
possible_interpretations: ['custom'],
needs_clarification: true
});
}
// 检测3: 关键词冲突(可能属于多个类别)
if (dim.keywords.length > 3 && hasConflictingKeywords(dim.keywords)) {
ambiguities.push({
dimension_id: dim.id,
type: 'conflicting_keywords',
description: `维度 "${dim.description}" 的关键词可能指向多个不同问题`,
possible_interpretations: inferMultipleCategories(dim.keywords),
needs_clarification: true
});
}
}
return ambiguities;
}
function suggestInterpretations(dim) {
// 基于 mappings 配置推荐可能的解释
const categories = Object.keys(mappings.categories).filter(
cat => cat !== 'authoring_principles_violation' // 排除内部检测类别
);
return categories.slice(0, 4); // 返回最常见的 4 个作为选项
}
function hasConflictingKeywords(keywords) {
// 检查关键词是否指向不同方向
const categoryHints = keywords.map(k => getKeywordCategoryHint(k));
const uniqueCategories = [...new Set(categoryHints.filter(c => c))];
return uniqueCategories.length > 1;
}
function getKeywordCategoryHint(keyword) {
// 从 mappings.keywords 构建查找表(合并中英文关键词)
const keywordMap = {
...mappings.keywords.chinese,
...mappings.keywords.english
};
return keywordMap[keyword.toLowerCase()];
}
```
## User Interaction
如果检测到需要澄清的歧义,暂停并询问用户:
```javascript
async function handleAmbiguities(ambiguities, dimensions) {
const needsClarification = ambiguities.filter(a => a.needs_clarification);
if (needsClarification.length === 0) {
return null; // 无需澄清
}
const questions = needsClarification.slice(0, 4).map(a => {
const dim = dimensions.find(d => d.id === a.dimension_id);
return {
question: `关于 "${dim.description}",您具体指的是?`,
header: a.dimension_id,
options: a.possible_interpretations.map(interp => ({
label: getCategoryLabel(interp),
description: getCategoryDescription(interp)
})),
multiSelect: false
};
});
return await AskUserQuestion({ questions });
}
function getCategoryLabel(category) {
// 从 mappings 配置加载标签
return mappings.category_labels_chinese[category] || category;
}
function getCategoryDescription(category) {
// 从 mappings 配置加载描述
return mappings.category_descriptions[category] || 'Requires further analysis';
}
```
## Output
### State Updates
```javascript
return {
stateUpdates: {
requirement_analysis: {
status: ambiguities.some(a => a.needs_clarification) ? 'needs_clarification' : 'completed',
analyzed_at: new Date().toISOString(),
dimensions: dimensions,
spec_matches: specMatches,
coverage: coverageResult,
ambiguities: ambiguities
},
// 根据分析结果自动优化 focus_areas
focus_areas: deriveOptimalFocusAreas(specMatches)
},
outputFiles: [
`${workDir}/requirement-analysis.json`,
`${workDir}/requirement-analysis.md`
],
summary: generateSummary(dimensions, coverageResult, ambiguities)
};
function deriveOptimalFocusAreas(specMatches) {
const coreCategories = ['context', 'memory', 'dataflow', 'agent'];
const matched = specMatches
.filter(m => m.taxonomy_match !== null)
.map(m => {
// 映射到诊断 focus_area
const category = m.taxonomy_match.category;
if (category === 'context_explosion' || category === 'performance') return 'context';
if (category === 'memory_loss') return 'memory';
if (category === 'dataflow_break') return 'dataflow';
if (category === 'agent_failure' || category === 'error_handling') return 'agent';
return null;
})
.filter(f => f && coreCategories.includes(f));
// 去重
return [...new Set(matched)];
}
function generateSummary(dimensions, coverage, ambiguities) {
const dimCount = dimensions.length;
const coverageStatus = coverage.status;
const ambiguityCount = ambiguities.filter(a => a.needs_clarification).length;
let summary = `分析完成:${dimCount} 个维度`;
summary += `,覆盖度 ${coverage.coverage_rate}% (${coverageStatus})`;
if (ambiguityCount > 0) {
summary += `${ambiguityCount} 个歧义点待澄清`;
}
return summary;
}
```
### Output Files
#### requirement-analysis.json
```json
{
"timestamp": "2024-01-01T00:00:00Z",
"target_skill": "skill-name",
"user_description": "原始用户描述",
"dimensions": [...],
"spec_matches": [...],
"coverage": {...},
"ambiguities": [...],
"derived_focus_areas": [...]
}
```
#### requirement-analysis.md
```markdown
# 需求分析报告
## 用户描述
> ${user_issue_description}
## 维度拆解
| ID | 描述 | 类别 | 置信度 |
|----|------|------|--------|
| DIM-001 | ... | ... | 0.85 |
## Spec 匹配
| 维度 | 检测模式 | 修复策略 | 是否满足 |
|------|----------|----------|----------|
| DIM-001 | CTX-001,002 | sliding_window | ✓ |
## 覆盖度评估
- 总维度数: N
- 有检测手段: M
- 有修复策略: K (满足标准)
- 覆盖率: X%
- 状态: satisfied/partial/unsatisfied
## 歧义点
(如有)
```
## Error Handling
| Error | Recovery |
|-------|----------|
| Gemini CLI 超时 | 重试一次,仍失败则使用简化分析 |
| JSON 解析失败 | 尝试修复 JSON 或使用默认维度 |
| 无法匹配任何类别 | 全部归类为 custom触发 Gemini 深度分析 |
## Next Actions
- 如果 `requirement_analysis.status === 'completed'`: 继续到 `action-diagnose-*`
- 如果 `requirement_analysis.status === 'needs_clarification'`: 等待用户澄清后重新执行
- 如果 `coverage.status === 'unsatisfied'`: 自动触发 `action-gemini-analysis` 进行深度分析