Files
Claude-Code-Workflow/codex-lens/benchmarks/analyze_methods.py
catlog22 56c03c847a feat: Add method to retrieve all semantic chunks from the vector store
- Implemented `get_all_chunks` method in `VectorStore` class to fetch all semantic chunks from the database.
- Added a new benchmark script `analyze_methods.py` for analyzing hybrid search methods and storage architecture.
- Included detailed analysis of method contributions, storage conflicts, and FTS + Rerank fusion experiments.
- Updated results JSON structure to reflect new analysis outputs and method performance metrics.
2026-01-02 12:32:43 +08:00

282 lines
10 KiB
Python

"""Analyze hybrid search methods contribution."""
import json
import sqlite3
import time
from pathlib import Path
from collections import defaultdict
import sys
sys.path.insert(0, str(Path(__file__).parent.parent / "src"))
from codexlens.search.hybrid_search import HybridSearchEngine
from codexlens.search.ranking import (
reciprocal_rank_fusion,
cross_encoder_rerank,
DEFAULT_WEIGHTS,
FTS_FALLBACK_WEIGHTS,
)
# Use index with most data
index_path = Path(r"C:\Users\dyw\.codexlens\indexes\D\Claude_dms3\codex-lens\src\codexlens\storage\_index.db")
print("=" * 60)
print("1. STORAGE ARCHITECTURE ANALYSIS")
print("=" * 60)
# Analyze storage
with sqlite3.connect(index_path) as conn:
cursor = conn.execute(
"SELECT name FROM sqlite_master WHERE type='table' ORDER BY name"
)
tables = [row[0] for row in cursor.fetchall()]
print("\nTable Overview:")
for table in tables:
try:
count = conn.execute(f"SELECT COUNT(*) FROM {table}").fetchone()[0]
if count > 0:
print(f" {table}: {count} rows")
except:
pass
print("\n--- Conflict Analysis ---")
chunks_count = 0
semantic_count = 0
if "chunks" in tables:
chunks_count = conn.execute("SELECT COUNT(*) FROM chunks").fetchone()[0]
if "semantic_chunks" in tables:
semantic_count = conn.execute("SELECT COUNT(*) FROM semantic_chunks").fetchone()[0]
print(f" chunks table: {chunks_count} rows")
print(f" semantic_chunks table: {semantic_count} rows")
if semantic_count > 0:
col_info = conn.execute("PRAGMA table_info(semantic_chunks)").fetchall()
col_names = [c[1] for c in col_info]
print(f"\n semantic_chunks columns: {col_names}")
for col in ["embedding", "embedding_binary", "embedding_dense"]:
if col in col_names:
null_count = conn.execute(
f"SELECT COUNT(*) FROM semantic_chunks WHERE {col} IS NULL"
).fetchone()[0]
non_null = semantic_count - null_count
print(f" {col}: {non_null}/{semantic_count} non-null")
if "splade_posting_list" in tables:
splade_count = conn.execute("SELECT COUNT(*) FROM splade_posting_list").fetchone()[0]
print(f"\n splade_posting_list: {splade_count} postings")
else:
print("\n splade_posting_list: NOT EXISTS")
print("\n" + "=" * 60)
print("2. METHOD CONTRIBUTION ANALYSIS")
print("=" * 60)
queries = [
"database connection",
"create table",
"sqlite store",
"migration",
"search chunks",
]
results_summary = {
"fts_exact": [],
"fts_fuzzy": [],
"vector": [],
"splade": [],
}
for query in queries:
print(f"\nQuery: '{query}'")
# FTS Exact
try:
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
engine._config = type("obj", (object,), {
"use_fts_fallback": True,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_fuzzy=False, enable_vector=False)
latency = (time.perf_counter() - start) * 1000
results_summary["fts_exact"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" FTS Exact: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" FTS Exact: ERROR - {e}")
# FTS Fuzzy
try:
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
engine._config = type("obj", (object,), {
"use_fts_fallback": True,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_fuzzy=True, enable_vector=False)
latency = (time.perf_counter() - start) * 1000
results_summary["fts_fuzzy"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" FTS Fuzzy: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" FTS Fuzzy: ERROR - {e}")
# Vector
try:
engine = HybridSearchEngine()
engine._config = type("obj", (object,), {
"use_fts_fallback": False,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_vector=True, pure_vector=True)
latency = (time.perf_counter() - start) * 1000
results_summary["vector"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" Vector: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" Vector: ERROR - {e}")
# SPLADE
try:
engine = HybridSearchEngine(weights={"splade": 1.0})
engine._config = type("obj", (object,), {
"use_fts_fallback": False,
"enable_splade": True,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_fuzzy=False, enable_vector=False)
latency = (time.perf_counter() - start) * 1000
results_summary["splade"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" SPLADE: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" SPLADE: ERROR - {e}")
print("\n--- Summary ---")
for method, data in results_summary.items():
if data:
avg_count = sum(d["count"] for d in data) / len(data)
avg_latency = sum(d["latency"] for d in data) / len(data)
print(f"{method}: avg {avg_count:.1f} results, {avg_latency:.1f}ms")
print("\n" + "=" * 60)
print("3. FTS + RERANK FUSION EXPERIMENT")
print("=" * 60)
# Initialize reranker
reranker = None
try:
from codexlens.semantic.reranker import get_reranker, check_reranker_available
ok, _ = check_reranker_available("onnx")
if ok:
reranker = get_reranker(backend="onnx", use_gpu=True)
print("\nReranker loaded: ONNX backend")
except Exception as e:
print(f"\nReranker unavailable: {e}")
test_queries = ["database connection", "create table migration"]
for query in test_queries:
print(f"\nQuery: '{query}'")
# Strategy 1: Standard Hybrid (FTS exact+fuzzy RRF)
try:
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
engine._config = type("obj", (object,), {
"use_fts_fallback": True,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
standard_results = engine.search(index_path, query, limit=10, enable_fuzzy=True, enable_vector=False)
standard_latency = (time.perf_counter() - start) * 1000
print(f" Standard FTS RRF: {len(standard_results)} results, {standard_latency:.1f}ms")
for i, r in enumerate(standard_results[:3]):
print(f" {i+1}. {r.path.split(chr(92))[-1]} (score: {r.score:.4f})")
except Exception as e:
print(f" Standard FTS RRF: ERROR - {e}")
standard_results = []
# Strategy 2: FTS + CrossEncoder Rerank
if reranker and standard_results:
try:
start = time.perf_counter()
reranked_results = cross_encoder_rerank(query, standard_results, reranker, top_k=10)
rerank_latency = (time.perf_counter() - start) * 1000
print(f" FTS + Rerank: {len(reranked_results)} results, {rerank_latency:.1f}ms (rerank only)")
for i, r in enumerate(reranked_results[:3]):
ce_score = r.metadata.get("cross_encoder_prob", r.score)
print(f" {i+1}. {r.path.split(chr(92))[-1]} (CE prob: {ce_score:.4f})")
# Compare rankings
standard_order = [r.path.split("\\")[-1] for r in standard_results[:5]]
reranked_order = [r.path.split("\\")[-1] for r in reranked_results[:5]]
if standard_order != reranked_order:
print(f" Ranking changed!")
print(f" Before: {standard_order}")
print(f" After: {reranked_order}")
else:
print(f" Ranking unchanged")
except Exception as e:
print(f" FTS + Rerank: ERROR - {e}")
print("\n" + "=" * 60)
print("CONCLUSIONS")
print("=" * 60)
print("""
1. Storage Architecture:
- semantic_chunks: Used by cascade-index (binary+dense vectors)
- chunks: Used by legacy SQLiteStore (currently empty in this index)
- splade_posting_list: Used by SPLADE sparse retrieval
- files_fts_*: Used by FTS exact/fuzzy search
CONFLICT: binary_cascade_search reads from semantic_chunks,
but standard FTS reads from files table. These are SEPARATE paths.
2. Method Contributions:
- FTS: Fast but limited to keyword matching
- Vector: Semantic understanding but requires embeddings
- SPLADE: Sparse retrieval, good for keyword+semantic hybrid
3. FTS + Rerank Fusion:
- CrossEncoder reranking can improve precision
- Adds ~100-200ms latency per query
- Most effective when initial FTS recall is good
""")