mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Implemented `get_all_chunks` method in `VectorStore` class to fetch all semantic chunks from the database. - Added a new benchmark script `analyze_methods.py` for analyzing hybrid search methods and storage architecture. - Included detailed analysis of method contributions, storage conflicts, and FTS + Rerank fusion experiments. - Updated results JSON structure to reflect new analysis outputs and method performance metrics.
282 lines
10 KiB
Python
282 lines
10 KiB
Python
"""Analyze hybrid search methods contribution."""
|
|
import json
|
|
import sqlite3
|
|
import time
|
|
from pathlib import Path
|
|
from collections import defaultdict
|
|
import sys
|
|
sys.path.insert(0, str(Path(__file__).parent.parent / "src"))
|
|
|
|
from codexlens.search.hybrid_search import HybridSearchEngine
|
|
from codexlens.search.ranking import (
|
|
reciprocal_rank_fusion,
|
|
cross_encoder_rerank,
|
|
DEFAULT_WEIGHTS,
|
|
FTS_FALLBACK_WEIGHTS,
|
|
)
|
|
|
|
# Use index with most data
|
|
index_path = Path(r"C:\Users\dyw\.codexlens\indexes\D\Claude_dms3\codex-lens\src\codexlens\storage\_index.db")
|
|
|
|
print("=" * 60)
|
|
print("1. STORAGE ARCHITECTURE ANALYSIS")
|
|
print("=" * 60)
|
|
|
|
# Analyze storage
|
|
with sqlite3.connect(index_path) as conn:
|
|
cursor = conn.execute(
|
|
"SELECT name FROM sqlite_master WHERE type='table' ORDER BY name"
|
|
)
|
|
tables = [row[0] for row in cursor.fetchall()]
|
|
|
|
print("\nTable Overview:")
|
|
for table in tables:
|
|
try:
|
|
count = conn.execute(f"SELECT COUNT(*) FROM {table}").fetchone()[0]
|
|
if count > 0:
|
|
print(f" {table}: {count} rows")
|
|
except:
|
|
pass
|
|
|
|
print("\n--- Conflict Analysis ---")
|
|
|
|
chunks_count = 0
|
|
semantic_count = 0
|
|
|
|
if "chunks" in tables:
|
|
chunks_count = conn.execute("SELECT COUNT(*) FROM chunks").fetchone()[0]
|
|
if "semantic_chunks" in tables:
|
|
semantic_count = conn.execute("SELECT COUNT(*) FROM semantic_chunks").fetchone()[0]
|
|
|
|
print(f" chunks table: {chunks_count} rows")
|
|
print(f" semantic_chunks table: {semantic_count} rows")
|
|
|
|
if semantic_count > 0:
|
|
col_info = conn.execute("PRAGMA table_info(semantic_chunks)").fetchall()
|
|
col_names = [c[1] for c in col_info]
|
|
|
|
print(f"\n semantic_chunks columns: {col_names}")
|
|
|
|
for col in ["embedding", "embedding_binary", "embedding_dense"]:
|
|
if col in col_names:
|
|
null_count = conn.execute(
|
|
f"SELECT COUNT(*) FROM semantic_chunks WHERE {col} IS NULL"
|
|
).fetchone()[0]
|
|
non_null = semantic_count - null_count
|
|
print(f" {col}: {non_null}/{semantic_count} non-null")
|
|
|
|
if "splade_posting_list" in tables:
|
|
splade_count = conn.execute("SELECT COUNT(*) FROM splade_posting_list").fetchone()[0]
|
|
print(f"\n splade_posting_list: {splade_count} postings")
|
|
else:
|
|
print("\n splade_posting_list: NOT EXISTS")
|
|
|
|
print("\n" + "=" * 60)
|
|
print("2. METHOD CONTRIBUTION ANALYSIS")
|
|
print("=" * 60)
|
|
|
|
queries = [
|
|
"database connection",
|
|
"create table",
|
|
"sqlite store",
|
|
"migration",
|
|
"search chunks",
|
|
]
|
|
|
|
results_summary = {
|
|
"fts_exact": [],
|
|
"fts_fuzzy": [],
|
|
"vector": [],
|
|
"splade": [],
|
|
}
|
|
|
|
for query in queries:
|
|
print(f"\nQuery: '{query}'")
|
|
|
|
# FTS Exact
|
|
try:
|
|
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
|
|
engine._config = type("obj", (object,), {
|
|
"use_fts_fallback": True,
|
|
"enable_splade": False,
|
|
"embedding_use_gpu": True,
|
|
"symbol_boost_factor": 1.5,
|
|
"enable_reranking": False,
|
|
})()
|
|
|
|
start = time.perf_counter()
|
|
results = engine.search(index_path, query, limit=10, enable_fuzzy=False, enable_vector=False)
|
|
latency = (time.perf_counter() - start) * 1000
|
|
|
|
results_summary["fts_exact"].append({"count": len(results), "latency": latency})
|
|
top_file = results[0].path.split("\\")[-1] if results else "N/A"
|
|
top_score = results[0].score if results else 0
|
|
print(f" FTS Exact: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
|
|
except Exception as e:
|
|
print(f" FTS Exact: ERROR - {e}")
|
|
|
|
# FTS Fuzzy
|
|
try:
|
|
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
|
|
engine._config = type("obj", (object,), {
|
|
"use_fts_fallback": True,
|
|
"enable_splade": False,
|
|
"embedding_use_gpu": True,
|
|
"symbol_boost_factor": 1.5,
|
|
"enable_reranking": False,
|
|
})()
|
|
|
|
start = time.perf_counter()
|
|
results = engine.search(index_path, query, limit=10, enable_fuzzy=True, enable_vector=False)
|
|
latency = (time.perf_counter() - start) * 1000
|
|
|
|
results_summary["fts_fuzzy"].append({"count": len(results), "latency": latency})
|
|
top_file = results[0].path.split("\\")[-1] if results else "N/A"
|
|
top_score = results[0].score if results else 0
|
|
print(f" FTS Fuzzy: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
|
|
except Exception as e:
|
|
print(f" FTS Fuzzy: ERROR - {e}")
|
|
|
|
# Vector
|
|
try:
|
|
engine = HybridSearchEngine()
|
|
engine._config = type("obj", (object,), {
|
|
"use_fts_fallback": False,
|
|
"enable_splade": False,
|
|
"embedding_use_gpu": True,
|
|
"symbol_boost_factor": 1.5,
|
|
"enable_reranking": False,
|
|
})()
|
|
|
|
start = time.perf_counter()
|
|
results = engine.search(index_path, query, limit=10, enable_vector=True, pure_vector=True)
|
|
latency = (time.perf_counter() - start) * 1000
|
|
|
|
results_summary["vector"].append({"count": len(results), "latency": latency})
|
|
top_file = results[0].path.split("\\")[-1] if results else "N/A"
|
|
top_score = results[0].score if results else 0
|
|
print(f" Vector: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
|
|
except Exception as e:
|
|
print(f" Vector: ERROR - {e}")
|
|
|
|
# SPLADE
|
|
try:
|
|
engine = HybridSearchEngine(weights={"splade": 1.0})
|
|
engine._config = type("obj", (object,), {
|
|
"use_fts_fallback": False,
|
|
"enable_splade": True,
|
|
"embedding_use_gpu": True,
|
|
"symbol_boost_factor": 1.5,
|
|
"enable_reranking": False,
|
|
})()
|
|
|
|
start = time.perf_counter()
|
|
results = engine.search(index_path, query, limit=10, enable_fuzzy=False, enable_vector=False)
|
|
latency = (time.perf_counter() - start) * 1000
|
|
|
|
results_summary["splade"].append({"count": len(results), "latency": latency})
|
|
top_file = results[0].path.split("\\")[-1] if results else "N/A"
|
|
top_score = results[0].score if results else 0
|
|
print(f" SPLADE: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
|
|
except Exception as e:
|
|
print(f" SPLADE: ERROR - {e}")
|
|
|
|
print("\n--- Summary ---")
|
|
for method, data in results_summary.items():
|
|
if data:
|
|
avg_count = sum(d["count"] for d in data) / len(data)
|
|
avg_latency = sum(d["latency"] for d in data) / len(data)
|
|
print(f"{method}: avg {avg_count:.1f} results, {avg_latency:.1f}ms")
|
|
|
|
print("\n" + "=" * 60)
|
|
print("3. FTS + RERANK FUSION EXPERIMENT")
|
|
print("=" * 60)
|
|
|
|
# Initialize reranker
|
|
reranker = None
|
|
try:
|
|
from codexlens.semantic.reranker import get_reranker, check_reranker_available
|
|
ok, _ = check_reranker_available("onnx")
|
|
if ok:
|
|
reranker = get_reranker(backend="onnx", use_gpu=True)
|
|
print("\nReranker loaded: ONNX backend")
|
|
except Exception as e:
|
|
print(f"\nReranker unavailable: {e}")
|
|
|
|
test_queries = ["database connection", "create table migration"]
|
|
|
|
for query in test_queries:
|
|
print(f"\nQuery: '{query}'")
|
|
|
|
# Strategy 1: Standard Hybrid (FTS exact+fuzzy RRF)
|
|
try:
|
|
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
|
|
engine._config = type("obj", (object,), {
|
|
"use_fts_fallback": True,
|
|
"enable_splade": False,
|
|
"embedding_use_gpu": True,
|
|
"symbol_boost_factor": 1.5,
|
|
"enable_reranking": False,
|
|
})()
|
|
|
|
start = time.perf_counter()
|
|
standard_results = engine.search(index_path, query, limit=10, enable_fuzzy=True, enable_vector=False)
|
|
standard_latency = (time.perf_counter() - start) * 1000
|
|
|
|
print(f" Standard FTS RRF: {len(standard_results)} results, {standard_latency:.1f}ms")
|
|
for i, r in enumerate(standard_results[:3]):
|
|
print(f" {i+1}. {r.path.split(chr(92))[-1]} (score: {r.score:.4f})")
|
|
except Exception as e:
|
|
print(f" Standard FTS RRF: ERROR - {e}")
|
|
standard_results = []
|
|
|
|
# Strategy 2: FTS + CrossEncoder Rerank
|
|
if reranker and standard_results:
|
|
try:
|
|
start = time.perf_counter()
|
|
reranked_results = cross_encoder_rerank(query, standard_results, reranker, top_k=10)
|
|
rerank_latency = (time.perf_counter() - start) * 1000
|
|
|
|
print(f" FTS + Rerank: {len(reranked_results)} results, {rerank_latency:.1f}ms (rerank only)")
|
|
for i, r in enumerate(reranked_results[:3]):
|
|
ce_score = r.metadata.get("cross_encoder_prob", r.score)
|
|
print(f" {i+1}. {r.path.split(chr(92))[-1]} (CE prob: {ce_score:.4f})")
|
|
|
|
# Compare rankings
|
|
standard_order = [r.path.split("\\")[-1] for r in standard_results[:5]]
|
|
reranked_order = [r.path.split("\\")[-1] for r in reranked_results[:5]]
|
|
|
|
if standard_order != reranked_order:
|
|
print(f" Ranking changed!")
|
|
print(f" Before: {standard_order}")
|
|
print(f" After: {reranked_order}")
|
|
else:
|
|
print(f" Ranking unchanged")
|
|
|
|
except Exception as e:
|
|
print(f" FTS + Rerank: ERROR - {e}")
|
|
|
|
print("\n" + "=" * 60)
|
|
print("CONCLUSIONS")
|
|
print("=" * 60)
|
|
print("""
|
|
1. Storage Architecture:
|
|
- semantic_chunks: Used by cascade-index (binary+dense vectors)
|
|
- chunks: Used by legacy SQLiteStore (currently empty in this index)
|
|
- splade_posting_list: Used by SPLADE sparse retrieval
|
|
- files_fts_*: Used by FTS exact/fuzzy search
|
|
|
|
CONFLICT: binary_cascade_search reads from semantic_chunks,
|
|
but standard FTS reads from files table. These are SEPARATE paths.
|
|
|
|
2. Method Contributions:
|
|
- FTS: Fast but limited to keyword matching
|
|
- Vector: Semantic understanding but requires embeddings
|
|
- SPLADE: Sparse retrieval, good for keyword+semantic hybrid
|
|
|
|
3. FTS + Rerank Fusion:
|
|
- CrossEncoder reranking can improve precision
|
|
- Adds ~100-200ms latency per query
|
|
- Most effective when initial FTS recall is good
|
|
""")
|