mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Introduced a comprehensive design document for a Code Semantic Graph aimed at enhancing static analysis capabilities. - Defined the architecture, core components, and implementation steps for analyzing function calls, data flow, and dependencies. - Included detailed specifications for nodes and edges in the graph, along with database schema for storage. - Outlined phases for implementation, technical challenges, success metrics, and application scenarios.
28 KiB
28 KiB
多层次分词器设计方案
1. 背景与目标
1.1 当前问题
当前 chunker.py 的两种分词策略存在明显缺陷:
symbol-based 策略:
- ✅ 优点:保持代码逻辑完整性,每个chunk是完整的函数/类
- ❌ 缺点:粒度不均,超大函数可能达到数百行,影响LLM处理和搜索精度
sliding-window 策略:
- ✅ 优点:chunk大小均匀,覆盖全面
- ❌ 缺点:破坏逻辑结构,可能将完整的循环/条件块切断
1.2 设计目标
实现多层次分词器,同时满足:
- 语义完整性:保持代码逻辑边界的完整性
- 粒度可控:支持从粗粒度(函数级)到细粒度(逻辑块级)的灵活划分
- 层级关系:保留chunk之间的父子关系,支持上下文检索
- 高效索引:优化向量化和检索性能
2. 技术架构
2.1 两层分词架构
Source Code
↓
[Layer 1: Symbol-Level Chunking] ← 使用 tree-sitter AST
↓
MacroChunks (Functions/Classes)
↓
[Layer 2: Logic-Block Chunking] ← AST深度遍历
↓
MicroChunks (Loops/Conditionals/Blocks)
↓
Vector Embedding + Indexing
2.2 核心组件
# 新增数据结构
@dataclass
class ChunkMetadata:
"""Chunk元数据"""
chunk_id: str
parent_id: Optional[str] # 父chunk ID
level: int # 层级:1=macro, 2=micro
chunk_type: str # function/class/loop/conditional/try_except
file_path: str
start_line: int
end_line: int
symbol_name: Optional[str]
context_summary: Optional[str] # 继承自父chunk的上下文
@dataclass
class HierarchicalChunk:
"""层级化的代码块"""
metadata: ChunkMetadata
content: str
embedding: Optional[List[float]] = None
children: List['HierarchicalChunk'] = field(default_factory=list)
3. 详细实现步骤
3.1 第一层:符号级分词(Macro-Chunking)
实现思路:复用现有 code_extractor.py 逻辑,增强元数据提取。
class MacroChunker:
"""第一层分词器:提取顶层符号"""
def __init__(self):
self.parser = Parser()
# 加载语言grammar
def chunk_by_symbols(
self,
content: str,
file_path: str,
language: str
) -> List[HierarchicalChunk]:
"""提取顶层函数和类定义"""
tree = self.parser.parse(bytes(content, 'utf-8'))
root_node = tree.root_node
chunks = []
for node in root_node.children:
if node.type in ['function_definition', 'class_definition',
'method_definition']:
chunk = self._create_macro_chunk(node, content, file_path)
chunks.append(chunk)
return chunks
def _create_macro_chunk(
self,
node,
content: str,
file_path: str
) -> HierarchicalChunk:
"""从AST节点创建macro chunk"""
start_line = node.start_point[0] + 1
end_line = node.end_point[0] + 1
# 提取符号名称
name_node = node.child_by_field_name('name')
symbol_name = content[name_node.start_byte:name_node.end_byte]
# 提取完整代码(包含docstring和装饰器)
chunk_content = self._extract_with_context(node, content)
metadata = ChunkMetadata(
chunk_id=f"{file_path}:{start_line}",
parent_id=None,
level=1,
chunk_type=node.type,
file_path=file_path,
start_line=start_line,
end_line=end_line,
symbol_name=symbol_name,
)
return HierarchicalChunk(
metadata=metadata,
content=chunk_content,
)
def _extract_with_context(self, node, content: str) -> str:
"""提取代码,包含装饰器和docstring"""
# 向上查找装饰器
start_byte = node.start_byte
prev_sibling = node.prev_sibling
while prev_sibling and prev_sibling.type == 'decorator':
start_byte = prev_sibling.start_byte
prev_sibling = prev_sibling.prev_sibling
return content[start_byte:node.end_byte]
3.2 第二层:逻辑块分词(Micro-Chunking)
实现思路:在每个macro chunk内部,按逻辑结构进一步划分。
class MicroChunker:
"""第二层分词器:提取逻辑块"""
# 需要划分的逻辑块类型
LOGIC_BLOCK_TYPES = {
'for_statement',
'while_statement',
'if_statement',
'try_statement',
'with_statement',
}
def chunk_logic_blocks(
self,
macro_chunk: HierarchicalChunk,
content: str,
max_lines: int = 50 # 大于此行数的macro chunk才进行二次划分
) -> List[HierarchicalChunk]:
"""在macro chunk内部提取逻辑块"""
# 小函数不需要二次划分
total_lines = macro_chunk.metadata.end_line - macro_chunk.metadata.start_line
if total_lines <= max_lines:
return []
tree = self.parser.parse(bytes(macro_chunk.content, 'utf-8'))
root_node = tree.root_node
micro_chunks = []
self._traverse_logic_blocks(
root_node,
macro_chunk,
content,
micro_chunks
)
return micro_chunks
def _traverse_logic_blocks(
self,
node,
parent_chunk: HierarchicalChunk,
content: str,
result: List[HierarchicalChunk]
):
"""递归遍历AST,提取逻辑块"""
if node.type in self.LOGIC_BLOCK_TYPES:
micro_chunk = self._create_micro_chunk(
node,
parent_chunk,
content
)
result.append(micro_chunk)
parent_chunk.children.append(micro_chunk)
# 继续遍历子节点
for child in node.children:
self._traverse_logic_blocks(child, parent_chunk, content, result)
def _create_micro_chunk(
self,
node,
parent_chunk: HierarchicalChunk,
content: str
) -> HierarchicalChunk:
"""创建micro chunk"""
# 计算相对于文件的行号
start_line = parent_chunk.metadata.start_line + node.start_point[0]
end_line = parent_chunk.metadata.start_line + node.end_point[0]
chunk_content = content[node.start_byte:node.end_byte]
metadata = ChunkMetadata(
chunk_id=f"{parent_chunk.metadata.chunk_id}:L{start_line}",
parent_id=parent_chunk.metadata.chunk_id,
level=2,
chunk_type=node.type,
file_path=parent_chunk.metadata.file_path,
start_line=start_line,
end_line=end_line,
symbol_name=parent_chunk.metadata.symbol_name, # 继承父符号名
context_summary=None, # 后续由LLM填充
)
return HierarchicalChunk(
metadata=metadata,
content=chunk_content,
)
3.3 统一接口:多层次分词器
class HierarchicalChunker:
"""多层次分词器统一接口"""
def __init__(self, config: ChunkConfig = None):
self.config = config or ChunkConfig()
self.macro_chunker = MacroChunker()
self.micro_chunker = MicroChunker()
def chunk_file(
self,
content: str,
file_path: str,
language: str
) -> List[HierarchicalChunk]:
"""对文件进行多层次分词"""
# 第一层:符号级分词
macro_chunks = self.macro_chunker.chunk_by_symbols(
content, file_path, language
)
# 第二层:逻辑块分词
all_chunks = []
for macro_chunk in macro_chunks:
all_chunks.append(macro_chunk)
# 对大函数进行二次划分
micro_chunks = self.micro_chunker.chunk_logic_blocks(
macro_chunk, content
)
all_chunks.extend(micro_chunks)
return all_chunks
def chunk_file_with_fallback(
self,
content: str,
file_path: str,
language: str
) -> List[HierarchicalChunk]:
"""带降级策略的分词"""
try:
return self.chunk_file(content, file_path, language)
except Exception as e:
logger.warning(f"Hierarchical chunking failed: {e}, falling back to sliding window")
# 降级到滑动窗口策略
return self._fallback_sliding_window(content, file_path, language)
4. 数据存储设计
4.1 数据库Schema
-- chunk表:存储所有层级的chunk
CREATE TABLE chunks (
chunk_id TEXT PRIMARY KEY,
parent_id TEXT, -- 父chunk ID,NULL表示顶层
level INTEGER NOT NULL, -- 1=macro, 2=micro
chunk_type TEXT NOT NULL, -- function/class/loop/if/try等
file_path TEXT NOT NULL,
start_line INTEGER NOT NULL,
end_line INTEGER NOT NULL,
symbol_name TEXT,
content TEXT NOT NULL,
content_hash TEXT, -- 用于检测内容变化
-- 语义元数据(由LLM生成)
summary TEXT,
keywords TEXT, -- JSON数组
purpose TEXT,
-- 向量嵌入
embedding BLOB, -- 存储向量
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (parent_id) REFERENCES chunks(chunk_id) ON DELETE CASCADE
);
-- 索引优化
CREATE INDEX idx_chunks_file_path ON chunks(file_path);
CREATE INDEX idx_chunks_parent_id ON chunks(parent_id);
CREATE INDEX idx_chunks_level ON chunks(level);
CREATE INDEX idx_chunks_symbol_name ON chunks(symbol_name);
4.2 向量索引
使用分层索引策略:
class HierarchicalVectorStore:
"""层级化向量存储"""
def __init__(self, db_path: Path):
self.db_path = db_path
self.conn = sqlite3.connect(db_path)
def add_chunk(self, chunk: HierarchicalChunk):
"""添加chunk及其向量"""
cursor = self.conn.cursor()
cursor.execute("""
INSERT INTO chunks (
chunk_id, parent_id, level, chunk_type,
file_path, start_line, end_line, symbol_name,
content, embedding
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
chunk.metadata.chunk_id,
chunk.metadata.parent_id,
chunk.metadata.level,
chunk.metadata.chunk_type,
chunk.metadata.file_path,
chunk.metadata.start_line,
chunk.metadata.end_line,
chunk.metadata.symbol_name,
chunk.content,
self._serialize_embedding(chunk.embedding),
))
self.conn.commit()
def search_hierarchical(
self,
query_embedding: List[float],
top_k: int = 10,
level_weights: Dict[int, float] = None
) -> List[Tuple[HierarchicalChunk, float]]:
"""层级化检索"""
# 默认权重:macro chunk权重更高
if level_weights is None:
level_weights = {1: 1.0, 2: 0.8}
# 检索所有chunk
cursor = self.conn.cursor()
cursor.execute("SELECT * FROM chunks WHERE embedding IS NOT NULL")
results = []
for row in cursor.fetchall():
chunk = self._row_to_chunk(row)
similarity = self._cosine_similarity(
query_embedding,
chunk.embedding
)
# 根据层级应用权重
weighted_score = similarity * level_weights.get(chunk.metadata.level, 1.0)
results.append((chunk, weighted_score))
# 按分数排序
results.sort(key=lambda x: x[1], reverse=True)
return results[:top_k]
def get_chunk_with_context(
self,
chunk_id: str
) -> Tuple[HierarchicalChunk, Optional[HierarchicalChunk]]:
"""获取chunk及其父chunk(提供上下文)"""
cursor = self.conn.cursor()
# 获取chunk本身
cursor.execute("SELECT * FROM chunks WHERE chunk_id = ?", (chunk_id,))
chunk_row = cursor.fetchone()
chunk = self._row_to_chunk(chunk_row)
# 获取父chunk
parent = None
if chunk.metadata.parent_id:
cursor.execute(
"SELECT * FROM chunks WHERE chunk_id = ?",
(chunk.metadata.parent_id,)
)
parent_row = cursor.fetchone()
if parent_row:
parent = self._row_to_chunk(parent_row)
return chunk, parent
5. LLM集成策略
5.1 分层生成语义元数据
class HierarchicalLLMEnhancer:
"""为层级chunk生成语义元数据"""
def enhance_hierarchical_chunks(
self,
chunks: List[HierarchicalChunk]
) -> Dict[str, SemanticMetadata]:
"""
分层处理策略:
1. 先处理所有level=1的macro chunks,生成详细摘要
2. 再处理level=2的micro chunks,使用父chunk摘要作为上下文
"""
results = {}
# 第一轮:处理macro chunks
macro_chunks = [c for c in chunks if c.metadata.level == 1]
macro_metadata = self.llm_enhancer.enhance_files([
FileData(
path=c.metadata.chunk_id,
content=c.content,
language=self._detect_language(c.metadata.file_path)
)
for c in macro_chunks
])
results.update(macro_metadata)
# 第二轮:处理micro chunks(带父上下文)
micro_chunks = [c for c in chunks if c.metadata.level == 2]
for micro_chunk in micro_chunks:
parent_id = micro_chunk.metadata.parent_id
parent_summary = macro_metadata.get(parent_id, {}).get('summary', '')
# 构建带上下文的prompt
enhanced_prompt = f"""
Parent Function: {micro_chunk.metadata.symbol_name}
Parent Summary: {parent_summary}
Code Block ({micro_chunk.metadata.chunk_type}):
{micro_chunk.content}
Generate a concise summary (1 sentence) and keywords for this specific code block.
"""
metadata = self._call_llm_with_context(enhanced_prompt)
results[micro_chunk.metadata.chunk_id] = metadata
return results
5.2 Prompt优化
针对不同层级使用不同的prompt模板:
Macro Chunk Prompt (Level 1):
PURPOSE: Generate comprehensive semantic metadata for a complete function/class
TASK:
- Provide a detailed summary (2-3 sentences) covering what the code does and why
- Extract 8-12 relevant keywords including technical terms and domain concepts
- Identify the primary purpose/category
MODE: analysis
CODE:
```{language}
{content}
OUTPUT: JSON with summary, keywords, purpose
**Micro Chunk Prompt (Level 2)**:
PURPOSE: Summarize a specific logic block within a larger function CONTEXT:
- Parent Function: {symbol_name}
- Parent Purpose: {parent_summary}
TASK:
- Provide a brief summary (1 sentence) of this specific block's role in the parent function
- Extract 3-5 keywords specific to this block's logic MODE: analysis
CODE BLOCK ({chunk_type}):
{content}
OUTPUT: JSON with summary, keywords
## 6. 检索增强
### 6.1 上下文扩展检索
```python
class ContextualSearchEngine:
"""支持上下文扩展的检索引擎"""
def search_with_context(
self,
query: str,
top_k: int = 10,
expand_context: bool = True
) -> List[SearchResult]:
"""
检索并自动扩展上下文
如果匹配到micro chunk,自动返回其父macro chunk作为上下文
"""
# 生成查询向量
query_embedding = self.embedder.embed_single(query)
# 层级化检索
raw_results = self.vector_store.search_hierarchical(
query_embedding,
top_k=top_k
)
# 扩展上下文
enriched_results = []
for chunk, score in raw_results:
result = SearchResult(
path=chunk.metadata.file_path,
score=score,
content=chunk.content,
start_line=chunk.metadata.start_line,
end_line=chunk.metadata.end_line,
symbol_name=chunk.metadata.symbol_name,
)
# 如果是micro chunk,获取父chunk作为上下文
if expand_context and chunk.metadata.level == 2:
parent_chunk, _ = self.vector_store.get_chunk_with_context(
chunk.metadata.chunk_id
)
if parent_chunk:
result.metadata['parent_context'] = {
'summary': parent_chunk.metadata.context_summary,
'symbol_name': parent_chunk.metadata.symbol_name,
'content': parent_chunk.content,
}
enriched_results.append(result)
return enriched_results
7. 测试策略
7.1 单元测试
import pytest
from codexlens.semantic.hierarchical_chunker import (
HierarchicalChunker, MacroChunker, MicroChunker
)
class TestMacroChunker:
"""测试第一层分词"""
def test_extract_functions(self):
"""测试提取函数定义"""
code = '''
def calculate_total(items):
"""Calculate total price."""
total = 0
for item in items:
total += item.price
return total
def apply_discount(total, discount):
"""Apply discount to total."""
return total * (1 - discount)
'''
chunker = MacroChunker()
chunks = chunker.chunk_by_symbols(code, 'test.py', 'python')
assert len(chunks) == 2
assert chunks[0].metadata.symbol_name == 'calculate_total'
assert chunks[1].metadata.symbol_name == 'apply_discount'
assert chunks[0].metadata.level == 1
def test_extract_with_decorators(self):
"""测试提取带装饰器的函数"""
code = '''
@app.route('/api/users')
@auth_required
def get_users():
return User.query.all()
'''
chunker = MacroChunker()
chunks = chunker.chunk_by_symbols(code, 'test.py', 'python')
assert len(chunks) == 1
assert '@app.route' in chunks[0].content
assert '@auth_required' in chunks[0].content
class TestMicroChunker:
"""测试第二层分词"""
def test_extract_loop_blocks(self):
"""测试提取循环块"""
code = '''
def process_items(items):
results = []
for item in items:
if item.active:
results.append(process(item))
return results
'''
macro_chunker = MacroChunker()
macro_chunks = macro_chunker.chunk_by_symbols(code, 'test.py', 'python')
micro_chunker = MicroChunker()
micro_chunks = micro_chunker.chunk_logic_blocks(
macro_chunks[0], code
)
# 应该提取出for循环和if条件块
assert len(micro_chunks) >= 1
assert any(c.metadata.chunk_type == 'for_statement' for c in micro_chunks)
def test_skip_small_functions(self):
"""测试小函数跳过二次划分"""
code = '''
def small_func(x):
return x * 2
'''
macro_chunker = MacroChunker()
macro_chunks = macro_chunker.chunk_by_symbols(code, 'test.py', 'python')
micro_chunker = MicroChunker()
micro_chunks = micro_chunker.chunk_logic_blocks(
macro_chunks[0], code, max_lines=10
)
# 小函数不应该被二次划分
assert len(micro_chunks) == 0
class TestHierarchicalChunker:
"""测试完整的多层次分词"""
def test_full_hierarchical_chunking(self):
"""测试完整的层级分词流程"""
code = '''
def complex_function(data):
"""A complex function with multiple logic blocks."""
# Validation
if not data:
raise ValueError("Data is empty")
# Processing
results = []
for item in data:
try:
processed = process_item(item)
results.append(processed)
except Exception as e:
logger.error(f"Failed to process: {e}")
continue
# Aggregation
total = sum(r.value for r in results)
return total
'''
chunker = HierarchicalChunker()
chunks = chunker.chunk_file(code, 'test.py', 'python')
# 应该有1个macro chunk和多个micro chunks
macro_chunks = [c for c in chunks if c.metadata.level == 1]
micro_chunks = [c for c in chunks if c.metadata.level == 2]
assert len(macro_chunks) == 1
assert len(micro_chunks) > 0
# 验证父子关系
for micro in micro_chunks:
assert micro.metadata.parent_id == macro_chunks[0].metadata.chunk_id
7.2 集成测试
class TestHierarchicalIndexing:
"""测试完整的索引流程"""
def test_index_and_search(self):
"""测试分层索引和检索"""
# 1. 分词
chunker = HierarchicalChunker()
chunks = chunker.chunk_file(sample_code, 'sample.py', 'python')
# 2. LLM增强
enhancer = HierarchicalLLMEnhancer()
metadata = enhancer.enhance_hierarchical_chunks(chunks)
# 3. 向量化
embedder = Embedder()
for chunk in chunks:
text = metadata[chunk.metadata.chunk_id].summary
chunk.embedding = embedder.embed_single(text)
# 4. 存储
vector_store = HierarchicalVectorStore(Path('/tmp/test.db'))
for chunk in chunks:
vector_store.add_chunk(chunk)
# 5. 检索
search_engine = ContextualSearchEngine(vector_store, embedder)
results = search_engine.search_with_context(
"find loop that processes items",
top_k=5
)
# 验证结果
assert len(results) > 0
assert any(r.metadata.get('parent_context') for r in results)
8. 性能优化
8.1 批量处理
class BatchHierarchicalProcessor:
"""批量处理多个文件的层级分词"""
def process_files_batch(
self,
file_paths: List[Path],
batch_size: int = 10
):
"""批量处理,优化LLM调用"""
all_chunks = []
# 1. 批量分词
for file_path in file_paths:
content = file_path.read_text()
chunks = self.chunker.chunk_file(
content, str(file_path), self._detect_language(file_path)
)
all_chunks.extend(chunks)
# 2. 批量LLM增强(减少API调用)
macro_chunks = [c for c in all_chunks if c.metadata.level == 1]
for i in range(0, len(macro_chunks), batch_size):
batch = macro_chunks[i:i+batch_size]
self.enhancer.enhance_batch(batch)
# 3. 批量向量化
all_texts = [c.content for c in all_chunks]
embeddings = self.embedder.embed_batch(all_texts)
for chunk, embedding in zip(all_chunks, embeddings):
chunk.embedding = embedding
# 4. 批量存储
self.vector_store.add_chunks_batch(all_chunks)
8.2 增量更新
class IncrementalIndexer:
"""增量索引器:只处理变化的文件"""
def update_file(self, file_path: Path):
"""增量更新单个文件"""
content = file_path.read_text()
content_hash = hashlib.sha256(content.encode()).hexdigest()
# 检查文件是否变化
cursor = self.conn.cursor()
cursor.execute("""
SELECT content_hash FROM chunks
WHERE file_path = ? AND level = 1
LIMIT 1
""", (str(file_path),))
row = cursor.fetchone()
if row and row[0] == content_hash:
logger.info(f"File {file_path} unchanged, skipping")
return
# 删除旧chunk
cursor.execute("DELETE FROM chunks WHERE file_path = ?", (str(file_path),))
# 重新索引
chunks = self.chunker.chunk_file(content, str(file_path), 'python')
# ... 继续处理
9. 潜在问题与解决方案
9.1 问题:超大函数的micro chunk过多
现象:某些遗留代码函数超过1000行,可能产生几十个micro chunks。
解决方案:
class AdaptiveMicroChunker:
"""自适应micro分词:根据函数大小调整策略"""
def chunk_logic_blocks(self, macro_chunk, content):
total_lines = macro_chunk.metadata.end_line - macro_chunk.metadata.start_line
if total_lines > 500:
# 超大函数:只提取顶层逻辑块,不递归
return self._extract_top_level_blocks(macro_chunk, content)
elif total_lines > 100:
# 大函数:递归深度限制为2层
return self._extract_blocks_with_depth_limit(macro_chunk, content, max_depth=2)
else:
# 正常函数:完全跳过micro chunking
return []
9.2 问题:tree-sitter解析失败
现象:对于语法错误的代码,tree-sitter解析可能失败。
解决方案:
def chunk_file_with_fallback(self, content, file_path, language):
"""带降级策略的分词"""
try:
# 尝试层级分词
return self.chunk_file(content, file_path, language)
except TreeSitterError as e:
logger.warning(f"Tree-sitter parsing failed: {e}")
# 降级到基于正则的简单symbol提取
return self._fallback_regex_chunking(content, file_path)
except Exception as e:
logger.error(f"Chunking failed completely: {e}")
# 最终降级到滑动窗口
return self._fallback_sliding_window(content, file_path, language)
9.3 问题:向量存储空间占用
现象:每个chunk都存储向量,空间占用可能很大。
解决方案:
- 选择性向量化:只对macro chunks和重要的micro chunks生成向量
- 向量压缩:使用PCA或量化技术减少向量维度
- 分离存储:向量存储在专门的向量数据库(如Faiss),SQLite只存元数据
class SelectiveVectorization:
"""选择性向量化:减少存储开销"""
VECTORIZE_CHUNK_TYPES = {
'function_definition', # 总是向量化
'class_definition', # 总是向量化
'for_statement', # 循环块
'try_statement', # 异常处理
# 'if_statement' 通常不单独向量化,依赖父chunk
}
def should_vectorize(self, chunk: HierarchicalChunk) -> bool:
"""判断是否需要为chunk生成向量"""
# Level 1总是向量化
if chunk.metadata.level == 1:
return True
# Level 2根据类型和大小决定
if chunk.metadata.chunk_type not in self.VECTORIZE_CHUNK_TYPES:
return False
# 太小的块(<5行)不向量化
lines = chunk.metadata.end_line - chunk.metadata.start_line
if lines < 5:
return False
return True
10. 实施路线图
Phase 1: 基础架构(2-3周)
- 设计数据结构(HierarchicalChunk, ChunkMetadata)
- 实现MacroChunker(复用现有code_extractor)
- 实现基础的MicroChunker
- 数据库schema设计和migration
- 单元测试
Phase 2: LLM集成(1-2周)
- 实现HierarchicalLLMEnhancer
- 设计分层prompt模板
- 批量处理优化
- 集成测试
Phase 3: 向量化与检索(1-2周)
- 实现HierarchicalVectorStore
- 实现ContextualSearchEngine
- 上下文扩展逻辑
- 检索性能测试
Phase 4: 优化与完善(2周)
- 性能优化(批量处理、增量更新)
- 降级策略完善
- 选择性向量化
- 全面测试和文档
Phase 5: 生产部署(1周)
- CLI集成
- 配置选项暴露
- 生产环境测试
- 发布
总计预估时间:7-10周
11. 成功指标
- 覆盖率:95%以上的代码能被正确分词
- 准确率:层级关系准确率>98%
- 检索质量:相比单层分词,检索相关性提升30%+
- 性能:单文件分词<100ms,批量处理>100文件/分钟
- 存储效率:相比全向量化,空间占用减少40%+
12. 参考资料
- Tree-sitter Documentation
- AST-based Code Analysis
- Hierarchical Text Segmentation
- 现有代码:
src/codexlens/semantic/chunker.py