Files
Claude-Code-Workflow/.codex/skills/review-cycle/phases/06-fix-discovery-batching.md
catlog22 54c3234d84 fix: 为所有 skill 的 .workflow/ 路径添加 projectRoot 前缀
从子目录执行 skill 时,相对路径 .workflow/ 会导致产物落到错误位置。
通过 git rev-parse --show-toplevel || pwd 检测项目根目录,
所有 .workflow/ 路径引用统一加上 {projectRoot} 前缀确保路径正确。

涉及 72 个文件,覆盖 20+ 个 skill。
2026-02-08 13:46:48 +08:00

239 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Phase 6: Fix Discovery & Batching
> Source: `commands/workflow/review-cycle-fix.md` Phase 1 + Phase 1.5
## Overview
Validate fix input source, create fix session structure, and perform intelligent grouping of findings into batches for parallel planning.
## Quick Start
```bash
# Fix from exported findings file (session-based path)
review-cycle --fix ${projectRoot}/.workflow/active/WFS-123/.review/fix-export-1706184622000.json
# Fix from review directory (auto-discovers latest export)
review-cycle --fix ${projectRoot}/.workflow/active/WFS-123/.review/
# Resume interrupted fix session
review-cycle --fix --resume
# Custom max retry attempts per finding
review-cycle --fix ${projectRoot}/.workflow/active/WFS-123/.review/ --max-iterations=5
# Custom batch size for parallel planning (default: 5 findings per batch)
review-cycle --fix ${projectRoot}/.workflow/active/WFS-123/.review/ --batch-size=3
```
**Fix Source**: Exported findings from review cycle dashboard
**Output Directory**: `{review-dir}/fixes/{fix-session-id}/` (within session .review/)
**Default Max Iterations**: 3 (per finding, adjustable)
**Default Batch Size**: 5 (findings per planning batch, adjustable)
**Max Parallel Agents**: 10 (concurrent planning agents)
**CLI Tools**: @cli-planning-agent (planning), @cli-execute-agent (fixing)
## Core Concept
Automated fix orchestrator with **parallel planning architecture**: Multiple AI agents analyze findings concurrently in batches, then coordinate parallel/serial execution. Generates fix timeline with intelligent grouping and dependency analysis, executes fixes with conservative test verification.
**Fix Process**:
- **Batching Phase (1.5)**: Orchestrator groups findings by file+dimension similarity, creates batches
- **Planning Phase (2)**: Up to 10 agents plan batches in parallel, generate partial plans, orchestrator aggregates
- **Execution Phase (3)**: Main orchestrator coordinates agents per aggregated timeline stages
- **Parallel Efficiency**: Customizable batch size (default: 5), MAX_PARALLEL=10 agents
- **No rigid structure**: Adapts to task requirements, not bound to fixed JSON format
**vs Manual Fixing**:
- **Manual**: Developer reviews findings one-by-one, fixes sequentially
- **Automated**: AI groups related issues, multiple agents plan in parallel, executes in optimal parallel/serial order with automatic test verification
### Value Proposition
1. **Parallel Planning**: Multiple agents analyze findings concurrently, reducing planning time for large batches (10+ findings)
2. **Intelligent Batching**: Semantic similarity grouping ensures related findings are analyzed together
3. **Multi-stage Coordination**: Supports complex parallel + serial execution with cross-batch dependency management
4. **Conservative Safety**: Mandatory test verification with automatic rollback on failure
5. **Resume Support**: Checkpoint-based recovery for interrupted sessions
### Orchestrator Boundary (CRITICAL)
- **ONLY command** for automated review finding fixes
- Manages: Intelligent batching (Phase 1.5), parallel planning coordination (spawn N agents), plan aggregation (merge partial plans, resolve cross-batch dependencies), stage-based execution scheduling, agent scheduling, progress tracking
- Delegates: Batch planning to @cli-planning-agent, fix execution to @cli-execute-agent
## Fix Process Overview
```
Phase 1: Discovery & Initialization
└─ Validate export file, create fix session structure, initialize state files
Phase 1.5: Intelligent Grouping & Batching
├─ Analyze findings metadata (file, dimension, severity)
├─ Group by semantic similarity (file proximity + dimension affinity)
├─ Create batches respecting --batch-size (default: 5)
└─ Output: Finding batches for parallel planning
Phase 2: Parallel Planning Coordination (@cli-planning-agent × N)
├─ Spawn MAX_PARALLEL planning agents concurrently (default: 10)
├─ Each agent processes one batch:
│ ├─ Analyze findings for patterns and dependencies
│ ├─ Group by file + dimension + root cause similarity
│ ├─ Determine execution strategy (parallel/serial/hybrid)
│ ├─ Generate fix timeline with stages
│ └─ Output: partial-plan-{batch-id}.json
├─ Collect results from all agents
└─ Aggregate: Merge partial plans → fix-plan.json (resolve cross-batch dependencies)
Phase 3: Execution Orchestration (Stage-based)
For each timeline stage:
├─ Load groups for this stage
├─ If parallel: Spawn all group agents simultaneously
├─ If serial: Execute groups sequentially
├─ Each agent:
│ ├─ Analyze code context
│ ├─ Apply fix per strategy
│ ├─ Run affected tests
│ ├─ On test failure: Rollback, retry up to max_iterations
│ └─ On success: Commit, update fix-progress-{N}.json
└─ Advance to next stage
Phase 4: Completion & Aggregation
└─ Aggregate results → Generate fix-summary.md → Update history → Output summary
Phase 5: Session Completion (Optional)
└─ If all fixes successful → Prompt to complete workflow session
```
## Agent Roles
| Agent | Responsibility |
|-------|---------------|
| **Orchestrator** | Input validation, session management, intelligent batching (Phase 1.5), parallel planning coordination (spawn N agents), plan aggregation (merge partial plans, resolve cross-batch dependencies), stage-based execution scheduling, progress tracking, result aggregation |
| **@cli-planning-agent** | Batch findings analysis, intelligent grouping (file+dimension+root cause), execution strategy determination (parallel/serial/hybrid), timeline generation with dependency mapping, partial plan output |
| **@cli-execute-agent** | Fix execution per group, code context analysis, Edit tool operations, test verification, git rollback on failure, completion JSON generation |
## Parallel Planning Architecture
**Batch Processing Strategy**:
| Phase | Agent Count | Input | Output | Purpose |
|-------|-------------|-------|--------|---------|
| **Batching (1.5)** | Orchestrator | All findings | Finding batches | Semantic grouping by file+dimension, respecting --batch-size |
| **Planning (2)** | N agents (≤10) | 1 batch each | partial-plan-{batch-id}.json | Analyze batch in parallel, generate execution groups and timeline |
| **Aggregation (2)** | Orchestrator | All partial plans | fix-plan.json | Merge timelines, resolve cross-batch dependencies |
| **Execution (3)** | M agents (dynamic) | 1 group each | fix-progress-{N}.json | Execute fixes per aggregated plan with test verification |
**Benefits**:
- **Speed**: N agents plan concurrently, reducing planning time for large batches
- **Scalability**: MAX_PARALLEL=10 prevents resource exhaustion
- **Flexibility**: Batch size customizable via --batch-size (default: 5)
- **Isolation**: Each planning agent focuses on related findings (semantic grouping)
- **Reusable**: Aggregated plan can be re-executed without re-planning
## Intelligent Grouping Strategy
**Three-Level Grouping**:
```javascript
// Level 1: Primary grouping by file + dimension
{file: "auth.ts", dimension: "security"} Group A
{file: "auth.ts", dimension: "quality"} Group B
{file: "query-builder.ts", dimension: "security"} Group C
// Level 2: Secondary grouping by root cause similarity
Group A findings Semantic similarity analysis (threshold 0.7)
Sub-group A1: "missing-input-validation" (findings 1, 2)
Sub-group A2: "insecure-crypto" (finding 3)
// Level 3: Dependency analysis
Sub-group A1 creates validation utilities
Sub-group C4 depends on those utilities
A1 must execute before C4 (serial stage dependency)
```
**Similarity Computation**:
- Combine: `description + recommendation + category`
- Vectorize: TF-IDF or LLM embedding
- Cluster: Greedy algorithm with cosine similarity > 0.7
## Phase 1: Discovery & Initialization (Orchestrator)
**Phase 1 Orchestrator Responsibilities**:
- Input validation: Check export file exists and is valid JSON
- Auto-discovery: If review-dir provided, find latest `*-fix-export.json`
- Session creation: Generate fix-session-id (`fix-{timestamp}`)
- Directory structure: Create `{review-dir}/fixes/{fix-session-id}/` with subdirectories
- State files: Initialize active-fix-session.json (session marker)
- Progress tracking initialization: Set up 5-phase tracking (including Phase 1.5)
## Phase 1.5: Intelligent Grouping & Batching (Orchestrator)
- Load all findings metadata (id, file, dimension, severity, title)
- Semantic similarity analysis:
- Primary: Group by file proximity (same file or related modules)
- Secondary: Group by dimension affinity (same review dimension)
- Tertiary: Analyze title/description similarity (root cause clustering)
- Create batches respecting --batch-size (default: 5 findings per batch)
- Balance workload: Distribute high-severity findings across batches
- Output: Array of finding batches for parallel planning
```javascript
// Load findings
const findings = JSON.parse(Read(exportFile));
const batchSize = flags.batchSize || 5;
// Semantic similarity analysis: group by file+dimension
const batches = [];
const grouped = new Map(); // key: "${file}:${dimension}"
for (const finding of findings) {
const key = `${finding.file || 'unknown'}:${finding.dimension || 'general'}`;
if (!grouped.has(key)) grouped.set(key, []);
grouped.get(key).push(finding);
}
// Create batches respecting batchSize
for (const [key, group] of grouped) {
while (group.length > 0) {
const batch = group.splice(0, batchSize);
batches.push({
batch_id: batches.length + 1,
findings: batch,
metadata: { primary_file: batch[0].file, primary_dimension: batch[0].dimension }
});
}
}
console.log(`Created ${batches.length} batches (${batchSize} findings per batch)`);
```
## Output File Structure
```
{projectRoot}/.workflow/active/WFS-{session-id}/.review/
├── fix-export-{timestamp}.json # Exported findings (input)
└── fixes/{fix-session-id}/
├── partial-plan-1.json # Batch 1 partial plan (planning agent 1 output)
├── partial-plan-2.json # Batch 2 partial plan (planning agent 2 output)
├── partial-plan-N.json # Batch N partial plan (planning agent N output)
├── fix-plan.json # Aggregated execution plan (orchestrator merges partials)
├── fix-progress-1.json # Group 1 progress (planning agent init → agent updates)
├── fix-progress-2.json # Group 2 progress (planning agent init → agent updates)
├── fix-progress-3.json # Group 3 progress (planning agent init → agent updates)
├── fix-summary.md # Final report (orchestrator generates)
├── active-fix-session.json # Active session marker
└── fix-history.json # All sessions history
```
**File Producers**:
- **Orchestrator**: Batches findings (Phase 1.5), aggregates partial plans → `fix-plan.json` (Phase 2), spawns parallel planning agents
- **Planning Agents (N)**: Each outputs `partial-plan-{batch-id}.json` + initializes `fix-progress-*.json` for assigned groups
- **Execution Agents (M)**: Update assigned `fix-progress-{N}.json` in real-time
## Output
- Variables: batches (array), fixSessionId, sessionDir
- Files: active-fix-session.json, directory structure created
## Next Phase
Return to orchestrator, then auto-continue to [Phase 7: Fix Parallel Planning](07-fix-parallel-planning.md).