Files
Claude-Code-Workflow/.claude/commands/memory/load-skill-memory.md
catlog22 920b179440 docs: 更新所有命令描述并重新生成索引文件
- 更新所有69个命令文件的description字段,基于实际功能重新生成详细描述
- 重新生成5个索引文件(all-commands, by-category, by-use-case, essential-commands, command-relationships)
- 移动analyze_commands.py到scripts/目录并完善功能
- 移除临时备份文件

命令描述改进示例:
- workflow:plan: 增加了工具和代理的详细说明(Gemini, action-planning-agent)
- cli:execute: 说明了YOLO权限和多种执行模式
- memory:update-related: 详细说明了批处理策略和工具回退链

索引文件改进:
- usage_scenario从2种扩展到10种(更精细分类)
- command-relationships覆盖所有69个命令
- 区分built-in(内置调用)和sequential(用户顺序执行)关系

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-06 15:11:31 +08:00

183 lines
6.8 KiB
Markdown

---
name: load-skill-memory
description: Activate SKILL package (auto-detect from paths/keywords or manual) and intelligently load documentation based on task intent keywords
argument-hint: "[skill_name] \"task intent description\""
allowed-tools: Bash(*), Read(*), Skill(*)
---
# Memory Load SKILL Command (/memory:load-skill-memory)
## 1. Overview
The `memory:load-skill-memory` command **activates SKILL package** (auto-detect from task or manual specification) and intelligently loads documentation based on user's task intent. The system automatically determines which documentation files to read based on the intent description.
**Core Philosophy**:
- **Flexible Activation**: Auto-detect skill from task description/paths, or user explicitly specifies
- **Intent-Driven Loading**: System analyzes task intent to determine documentation scope
- **Intelligent Selection**: Automatically chooses appropriate documentation level and modules
- **Direct Context Loading**: Loads selected documentation into conversation memory
**When to Use**:
- Manually activate a known SKILL package for a specific task
- Load SKILL context when system hasn't auto-triggered it
- Force reload SKILL documentation with specific intent focus
**Note**: Normal SKILL activation happens automatically via description triggers or path mentions (system extracts skill name from file paths for intelligent triggering). Use this command only when manual activation is needed.
## 2. Parameters
- `[skill_name]` (Optional): Name of SKILL package to activate
- If omitted: System auto-detects from task description or file paths
- If specified: Direct activation of named SKILL package
- Example: `my_project`, `api_service`
- Must match directory name under `.claude/skills/`
- `"task intent description"` (Required): Description of what you want to do
- Used for both: auto-detection (if skill_name omitted) and documentation scope selection
- **Analysis tasks**: "分析builder pattern实现", "理解参数系统架构"
- **Modification tasks**: "修改workflow逻辑", "增强thermal template功能"
- **Learning tasks**: "学习接口设计模式", "了解测试框架使用"
- **With paths**: "修改D:\projects\my_project\src\auth.py的认证逻辑" (auto-extracts `my_project`)
## 3. Execution Flow
### Step 1: Determine SKILL Name (if not provided)
**Auto-Detection Strategy** (when skill_name parameter is omitted):
1. **Path Extraction**: Scan task description for file paths
- Extract potential project names from path segments
- Example: `"修改D:\projects\my_project\src\auth.py"` → extracts `my_project`
2. **Keyword Matching**: Match task keywords against SKILL descriptions
- Search for project-specific terms, domain keywords
3. **Validation**: Check if extracted name matches `.claude/skills/{skill_name}/`
**Result**: Either uses provided skill_name or auto-detected name for activation
### Step 2: Activate SKILL and Analyze Intent
**Activate SKILL Package**:
```javascript
Skill(command: "${skill_name}") // Uses provided or auto-detected name
```
**What Happens After Activation**:
1. If SKILL exists in memory: System reads `.claude/skills/${skill_name}/SKILL.md`
2. If SKILL not found in memory: Error - SKILL package doesn't exist
3. SKILL description triggers are loaded into memory
4. Progressive loading mechanism becomes available
5. Documentation structure is now accessible
**Intent Analysis**:
Based on task intent description, system determines:
- **Action type**: analyzing, modifying, learning
- **Scope**: specific module, architecture overview, complete system
- **Depth**: quick reference, detailed API, full documentation
### Step 3: Intelligent Documentation Loading
**Loading Strategy**:
The system automatically selects documentation based on intent keywords:
1. **Quick Understanding** ("了解", "快速理解", "什么是"):
- Load: Level 0 (README.md only, ~2K tokens)
- Use case: Quick overview of capabilities
2. **Specific Module Analysis** ("分析XXX模块", "理解XXX实现"):
- Load: Module-specific README.md + API.md (~5K tokens)
- Use case: Deep dive into specific component
3. **Architecture Review** ("架构", "设计模式", "整体结构"):
- Load: README.md + ARCHITECTURE.md (~10K tokens)
- Use case: System design understanding
4. **Implementation/Modification** ("修改", "增强", "实现"):
- Load: Relevant module docs + EXAMPLES.md (~15K tokens)
- Use case: Code modification with examples
5. **Comprehensive Learning** ("学习", "完整了解", "深入理解"):
- Load: Level 3 (All documentation, ~40K tokens)
- Use case: Complete system mastery
**Documentation Loaded into Memory**:
After loading, the selected documentation content is available in conversation memory for subsequent operations.
## 4. Usage Examples
### Example 1: Manual Specification
**User Command**:
```bash
/memory:load-skill-memory my_project "修改认证模块增加OAuth支持"
```
**Execution**:
```javascript
// Step 1: Use provided skill_name
skill_name = "my_project" // Directly from parameter
// Step 2: Activate SKILL
Skill(command: "my_project")
// Step 3: Intent Analysis
Keywords: ["修改", "认证模块", "增加", "OAuth"]
Action: modifying (implementation)
Scope: auth module + examples
// Load documentation based on intent
Read(.workflow/docs/my_project/auth/README.md)
Read(.workflow/docs/my_project/auth/API.md)
Read(.workflow/docs/my_project/EXAMPLES.md)
```
### Example 2: Auto-Detection from Path
**User Command**:
```bash
/memory:load-skill-memory "修改D:\projects\my_project\src\services\api.py的接口逻辑"
```
**Execution**:
```javascript
// Step 1: Auto-detect skill_name from path
Path detected: "D:\projects\my_project\src\services\api.py"
Extracted: "my_project"
Validated: .claude/skills/my_project/ exists
skill_name = "my_project"
// Step 2: Activate SKILL
Skill(command: "my_project")
// Step 3: Intent Analysis
Keywords: ["修改", "services", "接口逻辑"]
Action: modifying (implementation)
Scope: services module + examples
// Load documentation based on intent
Read(.workflow/docs/my_project/services/README.md)
Read(.workflow/docs/my_project/services/API.md)
Read(.workflow/docs/my_project/EXAMPLES.md)
```
## 5. Intent Keyword Mapping
**Quick Reference**:
- **Triggers**: "了解", "快速", "什么是", "简介"
- **Loads**: README.md only (~2K)
**Module-Specific**:
- **Triggers**: "XXX模块", "XXX组件", "分析XXX"
- **Loads**: Module README + API (~5K)
**Architecture**:
- **Triggers**: "架构", "设计", "整体结构", "系统设计"
- **Loads**: README + ARCHITECTURE (~10K)
**Implementation**:
- **Triggers**: "修改", "增强", "实现", "开发", "集成"
- **Loads**: Relevant module + EXAMPLES (~15K)
**Comprehensive**:
- **Triggers**: "完整", "深入", "全面", "学习整个"
- **Loads**: All documentation (~40K)