mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-10 02:24:35 +08:00
- Added support for solution-level queues in the issue management system. - Updated interfaces to include solution-specific properties such as `approach`, `task_count`, and `files_touched`. - Modified queue handling to differentiate between task-level and solution-level items. - Adjusted rendering logic in the dashboard to display solutions and their associated tasks correctly. - Enhanced queue statistics and conflict resolution to accommodate the new solution structure. - Updated actions (next, done, retry) to handle both tasks and solutions seamlessly.
295 lines
9.6 KiB
Markdown
295 lines
9.6 KiB
Markdown
---
|
|
name: execute
|
|
description: Execute queue with codex using DAG-based parallel orchestration (solution-level)
|
|
argument-hint: "[--parallel <n>] [--executor codex|gemini|agent]"
|
|
allowed-tools: TodoWrite(*), Bash(*), Read(*), AskUserQuestion(*)
|
|
---
|
|
|
|
# Issue Execute Command (/issue:execute)
|
|
|
|
## Overview
|
|
|
|
Minimal orchestrator that dispatches **solution IDs** to executors. Each executor receives a complete solution with all its tasks.
|
|
|
|
**Design Principles:**
|
|
- `queue dag` → returns parallel batches with solution IDs (S-1, S-2, ...)
|
|
- `detail <id>` → READ-ONLY solution fetch (returns full solution with all tasks)
|
|
- `done <id>` → update solution completion status
|
|
- No race conditions: status changes only via `done`
|
|
- **Executor handles all tasks within a solution sequentially**
|
|
|
|
## Usage
|
|
|
|
```bash
|
|
/issue:execute [FLAGS]
|
|
|
|
# Examples
|
|
/issue:execute # Execute with default parallelism
|
|
/issue:execute --parallel 4 # Execute up to 4 tasks in parallel
|
|
/issue:execute --executor agent # Use agent instead of codex
|
|
|
|
# Flags
|
|
--parallel <n> Max parallel executors (default: 3)
|
|
--executor <type> Force executor: codex|gemini|agent (default: codex)
|
|
--dry-run Show DAG and batches without executing
|
|
```
|
|
|
|
## Execution Flow
|
|
|
|
```
|
|
Phase 1: Get DAG
|
|
└─ ccw issue queue dag → { parallel_batches: [["S-1","S-2"], ["S-3"]] }
|
|
|
|
Phase 2: Dispatch Parallel Batch
|
|
├─ For each solution ID in batch (parallel):
|
|
│ ├─ Executor calls: ccw issue detail <id> (READ-ONLY)
|
|
│ ├─ Executor gets FULL SOLUTION with all tasks
|
|
│ ├─ Executor implements all tasks sequentially (T1 → T2 → T3)
|
|
│ ├─ Executor tests + commits per task
|
|
│ └─ Executor calls: ccw issue done <id>
|
|
└─ Wait for batch completion
|
|
|
|
Phase 3: Next Batch
|
|
└─ ccw issue queue dag → check for newly-ready solutions
|
|
```
|
|
|
|
## Implementation
|
|
|
|
### Phase 1: Get DAG
|
|
|
|
```javascript
|
|
// Get dependency graph and parallel batches
|
|
const dagJson = Bash(`ccw issue queue dag`).trim();
|
|
const dag = JSON.parse(dagJson);
|
|
|
|
if (dag.error || dag.ready_count === 0) {
|
|
console.log(dag.error || 'No solutions ready for execution');
|
|
console.log('Use /issue:queue to form a queue first');
|
|
return;
|
|
}
|
|
|
|
console.log(`
|
|
## Queue DAG (Solution-Level)
|
|
|
|
- Total Solutions: ${dag.total}
|
|
- Ready: ${dag.ready_count}
|
|
- Completed: ${dag.completed_count}
|
|
- Parallel in batch 1: ${dag.parallel_batches[0]?.length || 0}
|
|
`);
|
|
|
|
// Dry run mode
|
|
if (flags.dryRun) {
|
|
console.log('### Parallel Batches:\n');
|
|
dag.parallel_batches.forEach((batch, i) => {
|
|
console.log(`Batch ${i + 1}: ${batch.join(', ')}`);
|
|
});
|
|
return;
|
|
}
|
|
```
|
|
|
|
### Phase 2: Dispatch Parallel Batch
|
|
|
|
```javascript
|
|
const parallelLimit = flags.parallel || 3;
|
|
const executor = flags.executor || 'codex';
|
|
|
|
// Process first batch (all solutions can run in parallel)
|
|
const batch = dag.parallel_batches[0] || [];
|
|
|
|
// Initialize TodoWrite
|
|
TodoWrite({
|
|
todos: batch.map(id => ({
|
|
content: `Execute solution ${id}`,
|
|
status: 'pending',
|
|
activeForm: `Executing solution ${id}`
|
|
}))
|
|
});
|
|
|
|
// Dispatch all in parallel (up to limit)
|
|
const chunks = [];
|
|
for (let i = 0; i < batch.length; i += parallelLimit) {
|
|
chunks.push(batch.slice(i, i + parallelLimit));
|
|
}
|
|
|
|
for (const chunk of chunks) {
|
|
console.log(`\n### Executing Solutions: ${chunk.join(', ')}`);
|
|
|
|
// Launch all in parallel
|
|
const executions = chunk.map(solutionId => {
|
|
updateTodo(solutionId, 'in_progress');
|
|
return dispatchExecutor(solutionId, executor);
|
|
});
|
|
|
|
await Promise.all(executions);
|
|
chunk.forEach(id => updateTodo(id, 'completed'));
|
|
}
|
|
```
|
|
|
|
### Executor Dispatch
|
|
|
|
```javascript
|
|
function dispatchExecutor(solutionId, executorType) {
|
|
// Executor fetches FULL SOLUTION via READ-ONLY detail command
|
|
// Executor handles all tasks within solution sequentially
|
|
// Then reports completion via done command
|
|
const prompt = `
|
|
## Execute Solution ${solutionId}
|
|
|
|
### Step 1: Get Solution (read-only)
|
|
\`\`\`bash
|
|
ccw issue detail ${solutionId}
|
|
\`\`\`
|
|
|
|
### Step 2: Execute All Tasks Sequentially
|
|
The detail command returns a FULL SOLUTION with all tasks.
|
|
Execute each task in order (T1 → T2 → T3 → ...):
|
|
|
|
For each task:
|
|
1. Follow task.implementation steps
|
|
2. Run task.test commands
|
|
3. Verify task.acceptance criteria
|
|
4. Commit using task.commit specification
|
|
|
|
### Step 3: Report Completion
|
|
When ALL tasks in solution are done:
|
|
\`\`\`bash
|
|
ccw issue done ${solutionId} --result '{"summary": "...", "files_modified": [...], "tasks_completed": N}'
|
|
\`\`\`
|
|
|
|
If any task failed:
|
|
\`\`\`bash
|
|
ccw issue done ${solutionId} --fail --reason "Task TX failed: ..."
|
|
\`\`\`
|
|
`;
|
|
|
|
if (executorType === 'codex') {
|
|
return Bash(
|
|
`ccw cli -p "${escapePrompt(prompt)}" --tool codex --mode write --id exec-${solutionId}`,
|
|
{ timeout: 7200000, run_in_background: true } // 2hr for full solution
|
|
);
|
|
} else if (executorType === 'gemini') {
|
|
return Bash(
|
|
`ccw cli -p "${escapePrompt(prompt)}" --tool gemini --mode write --id exec-${solutionId}`,
|
|
{ timeout: 3600000, run_in_background: true }
|
|
);
|
|
} else {
|
|
return Task({
|
|
subagent_type: 'code-developer',
|
|
run_in_background: false,
|
|
description: `Execute solution ${solutionId}`,
|
|
prompt: prompt
|
|
});
|
|
}
|
|
}
|
|
```
|
|
|
|
### Phase 3: Check Next Batch
|
|
|
|
```javascript
|
|
// Refresh DAG after batch completes
|
|
const refreshedDag = JSON.parse(Bash(`ccw issue queue dag`).trim());
|
|
|
|
console.log(`
|
|
## Batch Complete
|
|
|
|
- Solutions Completed: ${refreshedDag.completed_count}/${refreshedDag.total}
|
|
- Next ready: ${refreshedDag.ready_count}
|
|
`);
|
|
|
|
if (refreshedDag.ready_count > 0) {
|
|
console.log('Run `/issue:execute` again for next batch.');
|
|
}
|
|
```
|
|
|
|
## Parallel Execution Model
|
|
|
|
```
|
|
┌─────────────────────────────────────────────────────────────┐
|
|
│ Orchestrator │
|
|
├─────────────────────────────────────────────────────────────┤
|
|
│ 1. ccw issue queue dag │
|
|
│ → { parallel_batches: [["S-1","S-2"], ["S-3"]] } │
|
|
│ │
|
|
│ 2. Dispatch batch 1 (parallel): │
|
|
│ ┌──────────────────────┐ ┌──────────────────────┐ │
|
|
│ │ Executor 1 │ │ Executor 2 │ │
|
|
│ │ detail S-1 │ │ detail S-2 │ │
|
|
│ │ → gets full solution │ │ → gets full solution │ │
|
|
│ │ [T1→T2→T3 sequential]│ │ [T1→T2 sequential] │ │
|
|
│ │ done S-1 │ │ done S-2 │ │
|
|
│ └──────────────────────┘ └──────────────────────┘ │
|
|
│ │
|
|
│ 3. ccw issue queue dag (refresh) │
|
|
│ → S-3 now ready (S-1 completed, file conflict resolved) │
|
|
└─────────────────────────────────────────────────────────────┘
|
|
```
|
|
|
|
**Why this works for parallel:**
|
|
- `detail <id>` is READ-ONLY → no race conditions
|
|
- Each executor handles **all tasks within a solution** sequentially
|
|
- `done <id>` updates only its own solution status
|
|
- `queue dag` recalculates ready solutions after each batch
|
|
- Solutions in same batch have NO file conflicts
|
|
|
|
## CLI Endpoint Contract
|
|
|
|
### `ccw issue queue dag`
|
|
Returns dependency graph with parallel batches (solution-level):
|
|
```json
|
|
{
|
|
"queue_id": "QUE-...",
|
|
"total": 3,
|
|
"ready_count": 2,
|
|
"completed_count": 0,
|
|
"nodes": [
|
|
{ "id": "S-1", "issue_id": "ISS-xxx", "status": "pending", "ready": true, "task_count": 3 },
|
|
{ "id": "S-2", "issue_id": "ISS-yyy", "status": "pending", "ready": true, "task_count": 2 },
|
|
{ "id": "S-3", "issue_id": "ISS-zzz", "status": "pending", "ready": false, "depends_on": ["S-1"] }
|
|
],
|
|
"parallel_batches": [["S-1", "S-2"], ["S-3"]]
|
|
}
|
|
```
|
|
|
|
### `ccw issue detail <item_id>`
|
|
Returns FULL SOLUTION with all tasks (READ-ONLY):
|
|
```json
|
|
{
|
|
"item_id": "S-1",
|
|
"issue_id": "ISS-xxx",
|
|
"solution_id": "SOL-xxx",
|
|
"status": "pending",
|
|
"solution": {
|
|
"id": "SOL-xxx",
|
|
"approach": "...",
|
|
"tasks": [
|
|
{ "id": "T1", "title": "...", "implementation": [...], "test": {...} },
|
|
{ "id": "T2", "title": "...", "implementation": [...], "test": {...} },
|
|
{ "id": "T3", "title": "...", "implementation": [...], "test": {...} }
|
|
],
|
|
"exploration_context": { "relevant_files": [...] }
|
|
},
|
|
"execution_hints": { "executor": "codex", "estimated_minutes": 180 }
|
|
}
|
|
```
|
|
|
|
### `ccw issue done <item_id>`
|
|
Marks solution completed/failed, updates queue state, checks for queue completion.
|
|
|
|
## Error Handling
|
|
|
|
| Error | Resolution |
|
|
|-------|------------|
|
|
| No queue | Run /issue:queue first |
|
|
| No ready solutions | Dependencies blocked, check DAG |
|
|
| Executor timeout | Solution not marked done, can retry |
|
|
| Solution failure | Use `ccw issue retry` to reset |
|
|
| Partial task failure | Executor reports which task failed via `done --fail` |
|
|
|
|
## Related Commands
|
|
|
|
- `/issue:plan` - Plan issues with solutions
|
|
- `/issue:queue` - Form execution queue
|
|
- `ccw issue queue dag` - View dependency graph
|
|
- `ccw issue detail <id>` - View task details
|
|
- `ccw issue retry` - Reset failed tasks
|