mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Introduced action to diagnose documentation structure, identifying redundancies and conflicts. - Added centralized category mappings in JSON format for improved detection and strategy application. - Updated existing functions to utilize new mappings for taxonomy and strategy matching. - Implemented new detection patterns for documentation redundancy and conflict. - Expanded state schema to include documentation diagnosis results. - Enhanced severity criteria and strategy selection guide to accommodate new documentation issues.
11 KiB
11 KiB
Action: Analyze Requirements
将用户问题描述拆解为多个分析维度,匹配 Spec,评估覆盖度,检测歧义。
Purpose
- 将单一用户描述拆解为多个独立关注维度
- 为每个维度匹配 problem-taxonomy(检测)+ tuning-strategies(修复)
- 以"有修复策略"为标准判断是否满足需求
- 检测歧义并在必要时请求用户澄清
Preconditions
state.status === 'running'state.target_skill !== nullstate.completed_actions.includes('action-init')!state.completed_actions.includes('action-analyze-requirements')
Execution
Phase 1: 维度拆解 (Gemini CLI)
调用 Gemini 对用户描述进行语义分析,拆解为独立维度:
async function analyzeDimensions(state, workDir) {
const prompt = `
PURPOSE: 分析用户问题描述,拆解为独立的关注维度
TASK:
• 识别用户描述中的多个关注点(每个关注点应该是独立的、可单独分析的)
• 为每个关注点提取关键词(中英文均可)
• 推断可能的问题类别:
- context_explosion: 上下文/Token 相关
- memory_loss: 遗忘/约束丢失相关
- dataflow_break: 状态/数据流相关
- agent_failure: Agent/子任务相关
- prompt_quality: 提示词/输出质量相关
- architecture: 架构/结构相关
- performance: 性能/效率相关
- error_handling: 错误/异常处理相关
- output_quality: 输出质量/验证相关
- user_experience: 交互/体验相关
• 评估推断置信度 (0-1)
INPUT:
User description: ${state.user_issue_description}
Target skill: ${state.target_skill.name}
Skill structure: ${JSON.stringify(state.target_skill.phases)}
MODE: analysis
CONTEXT: @specs/problem-taxonomy.md @specs/dimension-mapping.md
EXPECTED: JSON (不要包含 markdown 代码块标记)
{
"dimensions": [
{
"id": "DIM-001",
"description": "关注点的简短描述",
"keywords": ["关键词1", "关键词2"],
"inferred_category": "问题类别",
"confidence": 0.85,
"reasoning": "推断理由"
}
],
"analysis_notes": "整体分析说明"
}
RULES:
- 每个维度必须独立,不重叠
- 低于 0.5 置信度的推断应标注需要澄清
- 如果用户描述非常模糊,至少提取一个 "general" 维度
`;
const cliCommand = `ccw cli -p "${escapeForShell(prompt)}" --tool gemini --mode analysis --cd "${state.target_skill.path}"`;
console.log('Phase 1: 执行 Gemini 维度拆解分析...');
const result = Bash({
command: cliCommand,
run_in_background: true,
timeout: 300000
});
return result;
}
Phase 2: Spec 匹配
基于 specs/category-mappings.json 配置为每个维度匹配检测模式和修复策略:
// 加载集中式映射配置
const mappings = JSON.parse(Read('specs/category-mappings.json'));
function matchSpecs(dimensions) {
return dimensions.map(dim => {
// 匹配 taxonomy pattern
const taxonomyMatch = findTaxonomyMatch(dim.inferred_category);
// 匹配 strategy
const strategyMatch = findStrategyMatch(dim.inferred_category);
// 判断是否满足(核心标准:有修复策略)
const hasFix = strategyMatch !== null && strategyMatch.strategies.length > 0;
return {
dimension_id: dim.id,
taxonomy_match: taxonomyMatch,
strategy_match: strategyMatch,
has_fix: hasFix,
needs_gemini_analysis: taxonomyMatch === null || mappings.categories[dim.inferred_category]?.needs_gemini_analysis
};
});
}
function findTaxonomyMatch(category) {
const config = mappings.categories[category];
if (!config || config.pattern_ids.length === 0) return null;
return {
category: category,
pattern_ids: config.pattern_ids,
severity_hint: config.severity_hint
};
}
function findStrategyMatch(category) {
const config = mappings.categories[category];
if (!config) {
// Fallback to custom from config
return mappings.fallback;
}
return {
strategies: config.strategies,
risk_levels: config.risk_levels
};
}
Phase 3: 覆盖度评估
评估所有维度的 Spec 覆盖情况:
function evaluateCoverage(specMatches) {
const total = specMatches.length;
const withDetection = specMatches.filter(m => m.taxonomy_match !== null).length;
const withFix = specMatches.filter(m => m.has_fix).length;
const rate = total > 0 ? Math.round((withFix / total) * 100) : 0;
let status;
if (rate >= 80) {
status = 'satisfied';
} else if (rate >= 50) {
status = 'partial';
} else {
status = 'unsatisfied';
}
return {
total_dimensions: total,
with_detection: withDetection,
with_fix_strategy: withFix,
coverage_rate: rate,
status: status
};
}
Phase 4: 歧义检测
识别需要用户澄清的歧义点:
function detectAmbiguities(dimensions, specMatches) {
const ambiguities = [];
for (const dim of dimensions) {
const match = specMatches.find(m => m.dimension_id === dim.id);
// 检测1: 低置信度 (< 0.5)
if (dim.confidence < 0.5) {
ambiguities.push({
dimension_id: dim.id,
type: 'vague_description',
description: `维度 "${dim.description}" 描述模糊,推断置信度低 (${dim.confidence})`,
possible_interpretations: suggestInterpretations(dim),
needs_clarification: true
});
}
// 检测2: 无匹配类别
if (!match || (!match.taxonomy_match && !match.strategy_match)) {
ambiguities.push({
dimension_id: dim.id,
type: 'no_category_match',
description: `维度 "${dim.description}" 无法匹配到已知问题类别`,
possible_interpretations: ['custom'],
needs_clarification: true
});
}
// 检测3: 关键词冲突(可能属于多个类别)
if (dim.keywords.length > 3 && hasConflictingKeywords(dim.keywords)) {
ambiguities.push({
dimension_id: dim.id,
type: 'conflicting_keywords',
description: `维度 "${dim.description}" 的关键词可能指向多个不同问题`,
possible_interpretations: inferMultipleCategories(dim.keywords),
needs_clarification: true
});
}
}
return ambiguities;
}
function suggestInterpretations(dim) {
// 基于 mappings 配置推荐可能的解释
const categories = Object.keys(mappings.categories).filter(
cat => cat !== 'authoring_principles_violation' // 排除内部检测类别
);
return categories.slice(0, 4); // 返回最常见的 4 个作为选项
}
function hasConflictingKeywords(keywords) {
// 检查关键词是否指向不同方向
const categoryHints = keywords.map(k => getKeywordCategoryHint(k));
const uniqueCategories = [...new Set(categoryHints.filter(c => c))];
return uniqueCategories.length > 1;
}
function getKeywordCategoryHint(keyword) {
// 从 mappings.keywords 构建查找表(合并中英文关键词)
const keywordMap = {
...mappings.keywords.chinese,
...mappings.keywords.english
};
return keywordMap[keyword.toLowerCase()];
}
User Interaction
如果检测到需要澄清的歧义,暂停并询问用户:
async function handleAmbiguities(ambiguities, dimensions) {
const needsClarification = ambiguities.filter(a => a.needs_clarification);
if (needsClarification.length === 0) {
return null; // 无需澄清
}
const questions = needsClarification.slice(0, 4).map(a => {
const dim = dimensions.find(d => d.id === a.dimension_id);
return {
question: `关于 "${dim.description}",您具体指的是?`,
header: a.dimension_id,
options: a.possible_interpretations.map(interp => ({
label: getCategoryLabel(interp),
description: getCategoryDescription(interp)
})),
multiSelect: false
};
});
return await AskUserQuestion({ questions });
}
function getCategoryLabel(category) {
// 从 mappings 配置加载标签
return mappings.category_labels_chinese[category] || category;
}
function getCategoryDescription(category) {
// 从 mappings 配置加载描述
return mappings.category_descriptions[category] || 'Requires further analysis';
}
Output
State Updates
return {
stateUpdates: {
requirement_analysis: {
status: ambiguities.some(a => a.needs_clarification) ? 'needs_clarification' : 'completed',
analyzed_at: new Date().toISOString(),
dimensions: dimensions,
spec_matches: specMatches,
coverage: coverageResult,
ambiguities: ambiguities
},
// 根据分析结果自动优化 focus_areas
focus_areas: deriveOptimalFocusAreas(specMatches)
},
outputFiles: [
`${workDir}/requirement-analysis.json`,
`${workDir}/requirement-analysis.md`
],
summary: generateSummary(dimensions, coverageResult, ambiguities)
};
function deriveOptimalFocusAreas(specMatches) {
const coreCategories = ['context', 'memory', 'dataflow', 'agent'];
const matched = specMatches
.filter(m => m.taxonomy_match !== null)
.map(m => {
// 映射到诊断 focus_area
const category = m.taxonomy_match.category;
if (category === 'context_explosion' || category === 'performance') return 'context';
if (category === 'memory_loss') return 'memory';
if (category === 'dataflow_break') return 'dataflow';
if (category === 'agent_failure' || category === 'error_handling') return 'agent';
return null;
})
.filter(f => f && coreCategories.includes(f));
// 去重
return [...new Set(matched)];
}
function generateSummary(dimensions, coverage, ambiguities) {
const dimCount = dimensions.length;
const coverageStatus = coverage.status;
const ambiguityCount = ambiguities.filter(a => a.needs_clarification).length;
let summary = `分析完成:${dimCount} 个维度`;
summary += `,覆盖度 ${coverage.coverage_rate}% (${coverageStatus})`;
if (ambiguityCount > 0) {
summary += `,${ambiguityCount} 个歧义点待澄清`;
}
return summary;
}
Output Files
requirement-analysis.json
{
"timestamp": "2024-01-01T00:00:00Z",
"target_skill": "skill-name",
"user_description": "原始用户描述",
"dimensions": [...],
"spec_matches": [...],
"coverage": {...},
"ambiguities": [...],
"derived_focus_areas": [...]
}
requirement-analysis.md
# 需求分析报告
## 用户描述
> ${user_issue_description}
## 维度拆解
| ID | 描述 | 类别 | 置信度 |
|----|------|------|--------|
| DIM-001 | ... | ... | 0.85 |
## Spec 匹配
| 维度 | 检测模式 | 修复策略 | 是否满足 |
|------|----------|----------|----------|
| DIM-001 | CTX-001,002 | sliding_window | ✓ |
## 覆盖度评估
- 总维度数: N
- 有检测手段: M
- 有修复策略: K (满足标准)
- 覆盖率: X%
- 状态: satisfied/partial/unsatisfied
## 歧义点
(如有)
Error Handling
| Error | Recovery |
|---|---|
| Gemini CLI 超时 | 重试一次,仍失败则使用简化分析 |
| JSON 解析失败 | 尝试修复 JSON 或使用默认维度 |
| 无法匹配任何类别 | 全部归类为 custom,触发 Gemini 深度分析 |
Next Actions
- 如果
requirement_analysis.status === 'completed': 继续到action-diagnose-* - 如果
requirement_analysis.status === 'needs_clarification': 等待用户澄清后重新执行 - 如果
coverage.status === 'unsatisfied': 自动触发action-gemini-analysis进行深度分析