🚀 Revolutionary AI-powered development workflow orchestration system ## 🔥 Core Innovations - **Document-State Separation**: Markdown for planning, JSON for execution state - **Progressive Complexity Management**: Level 0-2 adaptive workflow depth - **5-Agent Orchestration**: Specialized AI agents with context preservation - **Session-First Architecture**: Auto-discovery and state inheritance ## 🏗️ Key Features - Intelligent workflow orchestration (Simple/Medium/Complex patterns) - Real-time document-state synchronization with conflict resolution - Hierarchical task management with 3-level JSON structure - Gemini CLI integration with 12+ specialized templates - Comprehensive file output generation for all workflow commands ## 📦 Installation Remote one-liner installation: ``` iex (iwr -useb https://raw.githubusercontent.com/catlog22/Claude-CCW/main/install-remote.ps1) ``` ## 🎯 System Architecture 4-layer intelligent development architecture: 1. Command Layer - Smart routing and version management 2. Agent Layer - 5 specialized development agents 3. Workflow Layer - Gemini templates and task orchestration 4. Memory Layer - Distributed documentation and auto-sync 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
11 KiB
🚀 Command Overview: /update_dms
- Type: Distributed Memory System (DMS) Management.
- Purpose: Manages a hierarchical
CLAUDE.mddocumentation system using intelligent project classification and agent-based task integration. - Features: Supports multiple operation modes, automatic complexity detection, and parallel execution for high performance.
⚙️ Processing Modes
fast(Default)- Purpose: Targeted content updates based on current context or a specific path.
- Scope: Single module or file, no cross-module analysis.
deep- Purpose: Analyze relational impacts and update all associated files across modules.
- Scope: A specific feature or scope that touches multiple modules (e.g.,
auth-system).
full- Purpose: Complete, project-wide documentation reconstruction and overhaul.
- Scope: The entire project, executed via modular, bottom-up task orchestration.
🤔 When to Use Each Mode
- ⚡ Fast Mode: Use for daily development, quick updates, and single-module changes or bug fixes.
- 🔬 Deep Mode: Use for multi-module features, integration work, or complex refactoring with cross-module impacts.
- 🚀 Full Mode: Use for new project setup, major architectural changes, or a comprehensive documentation overhaul.
🔄 Mode-Specific Workflows
-
⚡ Fast Mode Flow
Execute 3-step scan->Identify target scope->Invoke single agent->Update specific CLAUDE.md->Validate & cleanup -
🔬 Deep Mode Flow
Project structure scan->Impact analysis->Multi-module detection->Decide on parallel execution->Orchestrate agent(s)->Synchronize updates->Cross-module validation -
🚀 Full Mode Flow
Project analysis->Module discovery->Task decomposition & dependency sorting->Create parallel batches->Execute Batch 1 (Base modules)->...->Execute Batch N (Top-level)->Invoke global summary agent->Generate root CLAUDE.md
🧠 Parallel Execution Logic
This describes the command's internal logic for selecting an execution strategy. It is handled automatically by /update_dms.
FUNCTION select_execution_strategy(project_structure):
file_count = analyze_file_count(project_structure)
module_count = analyze_module_count(project_structure)
// Based on the 'Parallel Execution Decision Matrix'
IF file_count < 20:
RETURN "single_agent_fast_mode"
ELSE IF file_count >= 20 AND file_count <= 100:
RETURN "directory_based_parallel" // Use 2-3 agents
ELSE IF file_count > 100 AND file_count <= 500:
RETURN "hybrid_parallel" // Use 3-5 agents
ELSE IF file_count > 500:
RETURN "dependency_aware_batching" // Use 5+ agents
END IF
END FUNCTION
FUNCTION orchestrate_full_mode(project_structure):
// 1. Decompose project into modules and dependencies
tasks = create_task_list(project_structure) // Corresponds to JSON Task Instructions
// 2. Group tasks into batches for parallel execution
batches = create_dependency_batches(tasks)
// 3. Execute batches sequentially, with parallel agents within each batch
FOR each batch in batches:
// This action corresponds to the orchestration script example.
// e.g., Task(memory-gemini-bridge, "task for module A") &
execute_batch_in_parallel(batch)
wait_for_batch_completion() // Barrier synchronization
// 4. Final summary step
// e.g., Task(memory-gemini-bridge, "global_summary task")
execute_global_summary_task()
END FUNCTION
📂 Distributed Memory System (DMS) Structure
The command assumes and manages a hierarchical CLAUDE.md file structure.
project/
├── CLAUDE.md # Project overview and architecture
├── src/
│ ├── CLAUDE.md # Core implementation guidelines
│ ├── components/
│ │ └── CLAUDE.md # Component-specific patterns
│ └── api/
│ └── CLAUDE.md # API implementation details
├── tests/
│ └── CLAUDE.md # Testing guidelines (if needed)
└── docs/
└── CLAUDE.md # Documentation standards (if needed)
📜 Documentation Hierarchy Rules
- Root Level (
./CLAUDE.md): Focus on project architecture, technology stack, and global standards. - Module Level (
./src/CLAUDE.md): Focus on core implementation guidelines, module responsibilities, and patterns. - Sub-Module Level (
./src/api/CLAUDE.md): Focus on detailed technical specifications and component-specific patterns.
🛠️ Pre-defined Analysis Commands
This 3-step script is used for initial project structure analysis.
# Step 1: Get project directory structure
tree -L 3 -d 2>/dev/null || find . -type d -maxdepth 3
# Step 2: Find existing CLAUDE.md files
find . -name "CLAUDE.md" -o -name "*CLAUDE.md" | sort
# Step 3: Generate context-aware file list (adapts to target scope)
# If target specified: focus on target-related files
# If no target: analyze current context and recent changes
find . -type f \( -name "*.js" -o -name "*.ts" -o -name "*.py" -o -name "*.md" \) | head -50
📝 Task Instructions Format (Full Mode)
In full mode, the orchestrator generates tasks for agents in this JSON format.
{
"task_type": "module_update" | "global_summary",
"target_module": "src/api" | "tests" | "root",
"analysis_commands": [
"find ./src/api -type f \\( -name '*.js' -o -name '*.ts' \\) | head -30",
"find ./src/api -name 'CLAUDE.md'"
],
"dependencies": ["src/utils", "src/core"],
"priority": 1,
"context": {
"module_purpose": "API endpoint implementations",
"existing_files": ["./src/api/CLAUDE.md"],
"focus_areas": ["implementation patterns", "error handling", "integration points"]
}
}
🤖 Agent Integration Examples
The /update_dms command orchestrates memory-gemini-bridge agents using tasks formatted like this.
Single Agent (Fast/Deep Mode)
Task:
description: "Module analysis with Gemini CLI"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: module_update
Target Module: src/api/auth
Analysis Commands:
1. find ./src/api/auth -type f \( -name "*.js" -o -name "*.ts" \) | head -30
2. cd src/api/auth && gemini --all-files -p "analyze authentication patterns"
3. Generate module-level CLAUDE.md for auth subsystem
Context:
- Module Purpose: Authentication service implementation
- Focus Areas: ["security patterns", "JWT handling", "middleware integration"]
- Dependencies: ["src/utils", "src/core"]
Success Criteria: Generate complete module CLAUDE.md with security patterns
Multiple Parallel Agents (Full Mode)
# Agent 1: API Module
Task:
description: "API Module Analysis"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: module_update
Target Module: src/api
Parallel Config: { batch_id: 1, partition_id: 1, max_concurrent: 3 }
Generate: ./src/api/CLAUDE.md
Sync Point: batch_complete
# Agent 2: Components Module (Parallel)
Task:
description: "Components Module Analysis"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: module_update
Target Module: src/components
Parallel Config: { batch_id: 1, partition_id: 2, max_concurrent: 3 }
Generate: ./src/components/CLAUDE.md
Sync Point: batch_complete
Global Summary Agent (Full Mode - Final Step)
Task:
description: "Project Global Summary"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: global_summary
Wait For: All module updates complete (batch_complete barrier)
Analysis Commands:
1. find . -name "CLAUDE.md" | grep -E "(src|lib)/" | sort
2. Read all module CLAUDE.md files
3. gemini -p "@./src/*/CLAUDE.md synthesize project architecture"
Generate: Root ./CLAUDE.md
🌐 Advanced Parallel Execution Strategies
The command auto-selects the optimal strategy. Below are the patterns it uses.
Strategy 1: Directory-Based Partitioning
- Best For: Well-organized projects with clear module boundaries.
- Example Command:
Agent-1: cd src/components && gemini --all-files -p "analyze React components"
Strategy 2: File Reference Partitioning
- Best For: Feature-based or cross-cutting concerns (e.g., authentication).
- Example Command:
Agent-1: gemini -p "@src/**/*auth* analyze authentication patterns"
Strategy 3: Hybrid Approach
- Best For: Complex projects with mixed organization patterns.
- Example Command: Mixes directory-based (
cd src/components) and pattern-based (@src/**/*{auth,security}*) analysis.
Strategy 4: Dependency-Aware Batching
- Best For: Large enterprise projects with complex interdependencies.
- Example Flow:
- Batch 1: Analyze foundation modules (e.g.,
types,utils).wait - Batch 2: Analyze service modules that depend on Batch 1 (e.g.,
api,database).wait - Batch 3: Analyze application modules that depend on Batch 2 (e.g.,
components).
- Batch 1: Analyze foundation modules (e.g.,
| Strategy | Best For | Scaling | Complexity | Performance |
|---|---|---|---|---|
| Directory-Based | Modular projects | Excellent | Low | High |
| File Pattern | Feature-focused | Good | Medium | Medium |
| Hybrid | Mixed structures | Very Good | High | High |
| Dependency-Aware | Large enterprise | Excellent | Very High | Maximum |
🧹 Automatic Content Management
- Cleanup: Removes duplicate content, outdated references, and deprecated patterns across the hierarchy.
- Validation: Ensures content is relevant to the current state of the project.
- Focus:
- Fast Mode: Quick relevance validation and dead reference removal.
- Deep Mode: Comprehensive redundancy elimination across affected modules.
- Full Mode: Complete project-wide cleanup and hierarchy optimization.
⏱️ Performance & Time Investment
- ⚡ Fast Mode: Minutes (Ideal for daily use).
- 🔬 Deep Mode: ~10-30 minutes with parallel execution.
- 🚀 Full Mode: ~30-45 minutes with parallel execution.
- Benefit: Parallel execution provides a massive speedup, offsetting a small coordination overhead.