Files
Claude-Code-Workflow/.claude/commands/update_dms.md
catlog22 445ac823ba Initial release: Claude Code Workflow (CCW) v2.0
🚀 Revolutionary AI-powered development workflow orchestration system

## 🔥 Core Innovations
- **Document-State Separation**: Markdown for planning, JSON for execution state
- **Progressive Complexity Management**: Level 0-2 adaptive workflow depth
- **5-Agent Orchestration**: Specialized AI agents with context preservation
- **Session-First Architecture**: Auto-discovery and state inheritance

## 🏗️ Key Features
- Intelligent workflow orchestration (Simple/Medium/Complex patterns)
- Real-time document-state synchronization with conflict resolution
- Hierarchical task management with 3-level JSON structure
- Gemini CLI integration with 12+ specialized templates
- Comprehensive file output generation for all workflow commands

## 📦 Installation
Remote one-liner installation:
```
iex (iwr -useb https://raw.githubusercontent.com/catlog22/Claude-CCW/main/install-remote.ps1)
```

## 🎯 System Architecture
4-layer intelligent development architecture:
1. Command Layer - Smart routing and version management
2. Agent Layer - 5 specialized development agents
3. Workflow Layer - Gemini templates and task orchestration
4. Memory Layer - Distributed documentation and auto-sync

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-07 17:39:54 +08:00

267 lines
11 KiB
Markdown

---
name: update_dms
description: Distributed Memory System management with intelligent classification
usage: /update_dms [mode] [target]
argument-hint: [full|fast|deep] [path or scope]
examples:
- /update_dms # Fast mode on current directory
- /update_dms full # Complete initialization
- /update_dms fast src/api/ # Quick update on specific path
- /update_dms deep auth-system # Deep analysis on scope
---
### 🚀 **Command Overview: `/update_dms`**
- **Type**: Distributed Memory System (DMS) Management.
- **Purpose**: Manages a hierarchical `CLAUDE.md` documentation system using intelligent project classification and agent-based task integration.
- **Features**: Supports multiple operation modes, automatic complexity detection, and parallel execution for high performance.
### ⚙️ **Processing Modes**
- **`fast` (Default)**
- **Purpose**: Targeted content updates based on current context or a specific path.
- **Scope**: Single module or file, no cross-module analysis.
- **`deep`**
- **Purpose**: Analyze relational impacts and update all associated files across modules.
- **Scope**: A specific feature or scope that touches multiple modules (e.g., `auth-system`).
- **`full`**
- **Purpose**: Complete, project-wide documentation reconstruction and overhaul.
- **Scope**: The entire project, executed via modular, bottom-up task orchestration.
### 🤔 **When to Use Each Mode**
- **⚡ Fast Mode**: Use for daily development, quick updates, and single-module changes or bug fixes.
- **🔬 Deep Mode**: Use for multi-module features, integration work, or complex refactoring with cross-module impacts.
- **🚀 Full Mode**: Use for new project setup, major architectural changes, or a comprehensive documentation overhaul.
### 🔄 **Mode-Specific Workflows**
- **⚡ Fast Mode Flow**
`Execute 3-step scan` -> `Identify target scope` -> `Invoke single agent` -> `Update specific CLAUDE.md` -> `Validate & cleanup`
- **🔬 Deep Mode Flow**
`Project structure scan` -> `Impact analysis` -> `Multi-module detection` -> `Decide on parallel execution` -> `Orchestrate agent(s)` -> `Synchronize updates` -> `Cross-module validation`
- **🚀 Full Mode Flow**
`Project analysis` -> `Module discovery` -> `Task decomposition & dependency sorting` -> `Create parallel batches` -> `Execute Batch 1 (Base modules)` -> `...` -> `Execute Batch N (Top-level)` -> `Invoke global summary agent` -> `Generate root CLAUDE.md`
### 🧠 **Parallel Execution Logic**
This describes the command's internal logic for selecting an execution strategy. It is handled automatically by `/update_dms`.
```pseudo
FUNCTION select_execution_strategy(project_structure):
file_count = analyze_file_count(project_structure)
module_count = analyze_module_count(project_structure)
// Based on the 'Parallel Execution Decision Matrix'
IF file_count < 20:
RETURN "single_agent_fast_mode"
ELSE IF file_count >= 20 AND file_count <= 100:
RETURN "directory_based_parallel" // Use 2-3 agents
ELSE IF file_count > 100 AND file_count <= 500:
RETURN "hybrid_parallel" // Use 3-5 agents
ELSE IF file_count > 500:
RETURN "dependency_aware_batching" // Use 5+ agents
END IF
END FUNCTION
FUNCTION orchestrate_full_mode(project_structure):
// 1. Decompose project into modules and dependencies
tasks = create_task_list(project_structure) // Corresponds to JSON Task Instructions
// 2. Group tasks into batches for parallel execution
batches = create_dependency_batches(tasks)
// 3. Execute batches sequentially, with parallel agents within each batch
FOR each batch in batches:
// This action corresponds to the orchestration script example.
// e.g., Task(memory-gemini-bridge, "task for module A") &
execute_batch_in_parallel(batch)
wait_for_batch_completion() // Barrier synchronization
// 4. Final summary step
// e.g., Task(memory-gemini-bridge, "global_summary task")
execute_global_summary_task()
END FUNCTION
```
### 📂 **Distributed Memory System (DMS) Structure**
The command assumes and manages a hierarchical `CLAUDE.md` file structure.
```
project/
├── CLAUDE.md # Project overview and architecture
├── src/
│ ├── CLAUDE.md # Core implementation guidelines
│ ├── components/
│ │ └── CLAUDE.md # Component-specific patterns
│ └── api/
│ └── CLAUDE.md # API implementation details
├── tests/
│ └── CLAUDE.md # Testing guidelines (if needed)
└── docs/
└── CLAUDE.md # Documentation standards (if needed)
```
### 📜 **Documentation Hierarchy Rules**
- **Root Level (`./CLAUDE.md`):** Focus on project architecture, technology stack, and global standards.
- **Module Level (`./src/CLAUDE.md`):** Focus on core implementation guidelines, module responsibilities, and patterns.
- **Sub-Module Level (`./src/api/CLAUDE.md`):** Focus on detailed technical specifications and component-specific patterns.
### 🛠️ **Pre-defined Analysis Commands**
This 3-step script is used for initial project structure analysis.
```bash
# Step 1: Get project directory structure
tree -L 3 -d 2>/dev/null || find . -type d -maxdepth 3
# Step 2: Find existing CLAUDE.md files
find . -name "CLAUDE.md" -o -name "*CLAUDE.md" | sort
# Step 3: Generate context-aware file list (adapts to target scope)
# If target specified: focus on target-related files
# If no target: analyze current context and recent changes
find . -type f \( -name "*.js" -o -name "*.ts" -o -name "*.py" -o -name "*.md" \) | head -50
```
### 📝 **Task Instructions Format (Full Mode)**
In `full` mode, the orchestrator generates tasks for agents in this JSON format.
```json
{
"task_type": "module_update" | "global_summary",
"target_module": "src/api" | "tests" | "root",
"analysis_commands": [
"find ./src/api -type f \\( -name '*.js' -o -name '*.ts' \\) | head -30",
"find ./src/api -name 'CLAUDE.md'"
],
"dependencies": ["src/utils", "src/core"],
"priority": 1,
"context": {
"module_purpose": "API endpoint implementations",
"existing_files": ["./src/api/CLAUDE.md"],
"focus_areas": ["implementation patterns", "error handling", "integration points"]
}
}
```
### 🤖 **Agent Integration Examples**
The `/update_dms` command orchestrates `memory-gemini-bridge` agents using tasks formatted like this.
#### **Single Agent (Fast/Deep Mode)**
```yaml
Task:
description: "Module analysis with Gemini CLI"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: module_update
Target Module: src/api/auth
Analysis Commands:
1. find ./src/api/auth -type f \( -name "*.js" -o -name "*.ts" \) | head -30
2. cd src/api/auth && gemini --all-files -p "analyze authentication patterns"
3. Generate module-level CLAUDE.md for auth subsystem
Context:
- Module Purpose: Authentication service implementation
- Focus Areas: ["security patterns", "JWT handling", "middleware integration"]
- Dependencies: ["src/utils", "src/core"]
Success Criteria: Generate complete module CLAUDE.md with security patterns
```
#### **Multiple Parallel Agents (Full Mode)**
```yaml
# Agent 1: API Module
Task:
description: "API Module Analysis"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: module_update
Target Module: src/api
Parallel Config: { batch_id: 1, partition_id: 1, max_concurrent: 3 }
Generate: ./src/api/CLAUDE.md
Sync Point: batch_complete
# Agent 2: Components Module (Parallel)
Task:
description: "Components Module Analysis"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: module_update
Target Module: src/components
Parallel Config: { batch_id: 1, partition_id: 2, max_concurrent: 3 }
Generate: ./src/components/CLAUDE.md
Sync Point: batch_complete
```
#### **Global Summary Agent (Full Mode - Final Step)**
```yaml
Task:
description: "Project Global Summary"
subagent_type: "memory-gemini-bridge"
prompt: |
Task Type: global_summary
Wait For: All module updates complete (batch_complete barrier)
Analysis Commands:
1. find . -name "CLAUDE.md" | grep -E "(src|lib)/" | sort
2. Read all module CLAUDE.md files
3. gemini -p "@./src/*/CLAUDE.md synthesize project architecture"
Generate: Root ./CLAUDE.md
```
### 🌐 **Advanced Parallel Execution Strategies**
The command auto-selects the optimal strategy. Below are the patterns it uses.
#### **Strategy 1: Directory-Based Partitioning**
- **Best For**: Well-organized projects with clear module boundaries.
- **Example Command**: `Agent-1: cd src/components && gemini --all-files -p "analyze React components"`
#### **Strategy 2: File Reference Partitioning**
- **Best For**: Feature-based or cross-cutting concerns (e.g., authentication).
- **Example Command**: `Agent-1: gemini -p "@src/**/*auth* analyze authentication patterns"`
#### **Strategy 3: Hybrid Approach**
- **Best For**: Complex projects with mixed organization patterns.
- **Example Command**: Mixes directory-based (`cd src/components`) and pattern-based (`@src/**/*{auth,security}*`) analysis.
#### **Strategy 4: Dependency-Aware Batching**
- **Best For**: Large enterprise projects with complex interdependencies.
- **Example Flow**:
1. **Batch 1**: Analyze foundation modules (e.g., `types`, `utils`). `wait`
2. **Batch 2**: Analyze service modules that depend on Batch 1 (e.g., `api`, `database`). `wait`
3. **Batch 3**: Analyze application modules that depend on Batch 2 (e.g., `components`).
| Strategy | Best For | Scaling | Complexity | Performance |
|---|---|---|---|---|
| Directory-Based | Modular projects | Excellent | Low | High |
| File Pattern | Feature-focused | Good | Medium | Medium |
| Hybrid | Mixed structures | Very Good | High | High |
| Dependency-Aware | Large enterprise | Excellent | Very High | Maximum |
### 🧹 **Automatic Content Management**
- **Cleanup**: Removes duplicate content, outdated references, and deprecated patterns across the hierarchy.
- **Validation**: Ensures content is relevant to the current state of the project.
- **Focus**:
- **Fast Mode**: Quick relevance validation and dead reference removal.
- **Deep Mode**: Comprehensive redundancy elimination across affected modules.
- **Full Mode**: Complete project-wide cleanup and hierarchy optimization.
### ⏱️ **Performance & Time Investment**
- **⚡ Fast Mode**: Minutes (Ideal for daily use).
- **🔬 Deep Mode**: ~10-30 minutes with parallel execution.
- **🚀 Full Mode**: ~30-45 minutes with parallel execution.
- **Benefit**: Parallel execution provides a massive speedup, offsetting a small coordination overhead.