Files
Claude-Code-Workflow/.claude/tech-stack-templates/python-dev.md
catlog22 445ac823ba Initial release: Claude Code Workflow (CCW) v2.0
🚀 Revolutionary AI-powered development workflow orchestration system

## 🔥 Core Innovations
- **Document-State Separation**: Markdown for planning, JSON for execution state
- **Progressive Complexity Management**: Level 0-2 adaptive workflow depth
- **5-Agent Orchestration**: Specialized AI agents with context preservation
- **Session-First Architecture**: Auto-discovery and state inheritance

## 🏗️ Key Features
- Intelligent workflow orchestration (Simple/Medium/Complex patterns)
- Real-time document-state synchronization with conflict resolution
- Hierarchical task management with 3-level JSON structure
- Gemini CLI integration with 12+ specialized templates
- Comprehensive file output generation for all workflow commands

## 📦 Installation
Remote one-liner installation:
```
iex (iwr -useb https://raw.githubusercontent.com/catlog22/Claude-CCW/main/install-remote.ps1)
```

## 🎯 System Architecture
4-layer intelligent development architecture:
1. Command Layer - Smart routing and version management
2. Agent Layer - 5 specialized development agents
3. Workflow Layer - Gemini templates and task orchestration
4. Memory Layer - Distributed documentation and auto-sync

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-07 17:39:54 +08:00

79 lines
3.0 KiB
Markdown

---
name: python-dev
description: Python core development principles following PEP 8 and essential practices
---
# Python Development Guidelines
You are now operating under Python core development principles. Focus on essential PEP 8 practices without dictating project structure.
## Core Language Principles
### Naming Conventions (PEP 8)
- **Variables/Functions**: snake_case (`get_user_data`, `is_valid`)
- **Constants**: SCREAMING_SNAKE_CASE (`API_ENDPOINT`, `MAX_RETRIES`)
- **Classes**: PascalCase (`UserService`, `ApiClient`)
- **Private**: Single underscore prefix (`_private_method`)
### Essential Function Guidelines
- **Type Hints**: Use for parameters and return values when helpful
- **Single Responsibility**: Each function should do one thing well
- **Explicit Error Handling**: Create specific exception classes
- **Context Managers**: Use `with` statements for resource management
```python
from typing import List, Optional
def calculate_total(items: List[dict]) -> float:
"""Calculate total price of items."""
if not items:
raise ValueError("Items list cannot be empty")
return sum(item.get('price', 0) for item in items)
# Core principle: Specific exceptions
class UserNotFoundError(Exception):
"""Raised when user cannot be found."""
pass
```
## Essential Testing Practices
- **Test Structure**: Given-When-Then pattern
- **Descriptive Names**: Test names should describe behavior
- **Mock External Dependencies**: Isolate units under test
- **Edge Cases**: Test error conditions and boundary values
## Code Quality Essentials
- **PEP 8 Compliance**: Follow standard Python style guide
- **Type Checking**: Use mypy or similar for type safety
- **Automated Formatting**: Use Black or similar formatter
- **Import Organization**: Keep imports organized and minimal
## Security Core Principles
- **Input Validation**: Validate all external inputs
- **Parameterized Queries**: Never use string interpolation for SQL
- **Environment Variables**: Keep secrets out of code
- **Dependency Management**: Regularly audit packages for vulnerabilities
```python
# Core principle: Safe database queries
from sqlalchemy import text
def get_user_by_email(email: str) -> Optional[User]:
query = text("SELECT * FROM users WHERE email = :email")
result = db.execute(query, {"email": email})
return result.fetchone()
```
## Modern Python Features
- **F-strings**: Use for string formatting (`f"Hello {name}"`)
- **Pathlib**: Use `pathlib.Path` instead of `os.path`
- **Dataclasses**: Use for simple data containers
- **List/Dict Comprehensions**: Use appropriately for clarity
## Performance Guidelines
- **Avoid Premature Optimization**: Write clear code first
- **Use Built-in Functions**: Leverage Python's built-in efficiency
- **Generator Expressions**: For memory efficiency with large datasets
- **Context Managers**: Ensure proper resource cleanup
Apply these core Python principles to ensure clean, maintainable, and Pythonic code without imposing specific frameworks or project structures.