mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-06 01:54:11 +08:00
🚀 Revolutionary AI-powered development workflow orchestration system ## 🔥 Core Innovations - **Document-State Separation**: Markdown for planning, JSON for execution state - **Progressive Complexity Management**: Level 0-2 adaptive workflow depth - **5-Agent Orchestration**: Specialized AI agents with context preservation - **Session-First Architecture**: Auto-discovery and state inheritance ## 🏗️ Key Features - Intelligent workflow orchestration (Simple/Medium/Complex patterns) - Real-time document-state synchronization with conflict resolution - Hierarchical task management with 3-level JSON structure - Gemini CLI integration with 12+ specialized templates - Comprehensive file output generation for all workflow commands ## 📦 Installation Remote one-liner installation: ``` iex (iwr -useb https://raw.githubusercontent.com/catlog22/Claude-CCW/main/install-remote.ps1) ``` ## 🎯 System Architecture 4-layer intelligent development architecture: 1. Command Layer - Smart routing and version management 2. Agent Layer - 5 specialized development agents 3. Workflow Layer - Gemini templates and task orchestration 4. Memory Layer - Distributed documentation and auto-sync 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
79 lines
3.0 KiB
Markdown
79 lines
3.0 KiB
Markdown
---
|
|
name: python-dev
|
|
description: Python core development principles following PEP 8 and essential practices
|
|
---
|
|
|
|
# Python Development Guidelines
|
|
|
|
You are now operating under Python core development principles. Focus on essential PEP 8 practices without dictating project structure.
|
|
|
|
## Core Language Principles
|
|
|
|
### Naming Conventions (PEP 8)
|
|
- **Variables/Functions**: snake_case (`get_user_data`, `is_valid`)
|
|
- **Constants**: SCREAMING_SNAKE_CASE (`API_ENDPOINT`, `MAX_RETRIES`)
|
|
- **Classes**: PascalCase (`UserService`, `ApiClient`)
|
|
- **Private**: Single underscore prefix (`_private_method`)
|
|
|
|
### Essential Function Guidelines
|
|
- **Type Hints**: Use for parameters and return values when helpful
|
|
- **Single Responsibility**: Each function should do one thing well
|
|
- **Explicit Error Handling**: Create specific exception classes
|
|
- **Context Managers**: Use `with` statements for resource management
|
|
|
|
```python
|
|
from typing import List, Optional
|
|
|
|
def calculate_total(items: List[dict]) -> float:
|
|
"""Calculate total price of items."""
|
|
if not items:
|
|
raise ValueError("Items list cannot be empty")
|
|
return sum(item.get('price', 0) for item in items)
|
|
|
|
# Core principle: Specific exceptions
|
|
class UserNotFoundError(Exception):
|
|
"""Raised when user cannot be found."""
|
|
pass
|
|
```
|
|
|
|
## Essential Testing Practices
|
|
- **Test Structure**: Given-When-Then pattern
|
|
- **Descriptive Names**: Test names should describe behavior
|
|
- **Mock External Dependencies**: Isolate units under test
|
|
- **Edge Cases**: Test error conditions and boundary values
|
|
|
|
## Code Quality Essentials
|
|
- **PEP 8 Compliance**: Follow standard Python style guide
|
|
- **Type Checking**: Use mypy or similar for type safety
|
|
- **Automated Formatting**: Use Black or similar formatter
|
|
- **Import Organization**: Keep imports organized and minimal
|
|
|
|
## Security Core Principles
|
|
- **Input Validation**: Validate all external inputs
|
|
- **Parameterized Queries**: Never use string interpolation for SQL
|
|
- **Environment Variables**: Keep secrets out of code
|
|
- **Dependency Management**: Regularly audit packages for vulnerabilities
|
|
|
|
```python
|
|
# Core principle: Safe database queries
|
|
from sqlalchemy import text
|
|
|
|
def get_user_by_email(email: str) -> Optional[User]:
|
|
query = text("SELECT * FROM users WHERE email = :email")
|
|
result = db.execute(query, {"email": email})
|
|
return result.fetchone()
|
|
```
|
|
|
|
## Modern Python Features
|
|
- **F-strings**: Use for string formatting (`f"Hello {name}"`)
|
|
- **Pathlib**: Use `pathlib.Path` instead of `os.path`
|
|
- **Dataclasses**: Use for simple data containers
|
|
- **List/Dict Comprehensions**: Use appropriately for clarity
|
|
|
|
## Performance Guidelines
|
|
- **Avoid Premature Optimization**: Write clear code first
|
|
- **Use Built-in Functions**: Leverage Python's built-in efficiency
|
|
- **Generator Expressions**: For memory efficiency with large datasets
|
|
- **Context Managers**: Ensure proper resource cleanup
|
|
|
|
Apply these core Python principles to ensure clean, maintainable, and Pythonic code without imposing specific frameworks or project structures. |