mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-15 02:42:45 +08:00
- Added Phase 2: Test-Cycle Execution documentation outlining the process for dynamic test-fix execution, including agent roles, core responsibilities, intelligent strategy engine, and progressive testing. - Introduced new PowerShell scripts for analyzing TypeScript errors, focusing on error categorization and reporting. - Created end-to-end tests for the Help Page, ensuring content visibility, documentation navigation, internationalization support, and accessibility compliance.
19 KiB
19 KiB
Phase 3: Discover by Prompt
来源:
commands/issue/discover-by-prompt.md
Overview
Prompt-driven issue discovery with intelligent planning. Instead of fixed perspectives, this command analyzes user intent via Gemini, plans exploration strategy dynamically, and executes iterative multi-agent exploration with ACE semantic search.
Core workflow: Prompt Analysis → ACE Context → Gemini Planning → Iterative Exploration → Cross-Analysis → Issue Generation
Core Difference from Phase 2 (Discover):
- Phase 2: Pre-defined perspectives (bug, security, etc.), parallel execution
- Phase 3: User-driven prompt, Gemini-planned strategy, iterative exploration
Prerequisites
- User prompt describing what to discover
ccw cliavailable (for Gemini planning)ccw issueCLI available
Auto Mode
When --yes or -y: Auto-continue all iterations, skip confirmations.
Arguments
| Argument | Required | Type | Default | Description |
|---|---|---|---|---|
| prompt | Yes | String | - | Natural language description of what to find |
| --scope | No | String | **/* |
File pattern to explore |
| --depth | No | String | standard |
standard (3 iterations) or deep (5+ iterations) |
| --max-iterations | No | Integer | 5 | Maximum exploration iterations |
| --plan-only | No | Flag | false | Stop after Gemini planning, show plan |
| -y, --yes | No | Flag | false | Skip all confirmations |
Use Cases
| Scenario | Example Prompt |
|---|---|
| API Contract | "Check if frontend calls match backend endpoints" |
| Error Handling | "Find inconsistent error handling patterns" |
| Migration Gap | "Compare old auth with new auth implementation" |
| Feature Parity | "Verify mobile has all web features" |
| Schema Drift | "Check if TypeScript types match API responses" |
| Integration | "Find mismatches between service A and service B" |
Execution Steps
Step 3.1: Prompt Analysis & Initialization
// Parse arguments
const { prompt, scope, depth, maxIterations } = parseArgs(args);
// Generate discovery ID
const discoveryId = `DBP-${formatDate(new Date(), 'YYYYMMDD-HHmmss')}`;
// Create output directory
const outputDir = `.workflow/issues/discoveries/${discoveryId}`;
await mkdir(outputDir, { recursive: true });
await mkdir(`${outputDir}/iterations`, { recursive: true });
// Detect intent type from prompt
const intentType = detectIntent(prompt);
// Returns: 'comparison' | 'search' | 'verification' | 'audit'
// Initialize discovery state
await writeJson(`${outputDir}/discovery-state.json`, {
discovery_id: discoveryId,
type: 'prompt-driven',
prompt: prompt,
intent_type: intentType,
scope: scope || '**/*',
depth: depth || 'standard',
max_iterations: maxIterations || 5,
phase: 'initialization',
created_at: new Date().toISOString(),
iterations: [],
cumulative_findings: [],
comparison_matrix: null
});
Step 3.2: ACE Context Gathering
// Extract keywords from prompt for semantic search
const keywords = extractKeywords(prompt);
// Use ACE to understand codebase structure
const aceQueries = [
`Project architecture and module structure for ${keywords.join(', ')}`,
`Where are ${keywords[0]} implementations located?`,
`How does ${keywords.slice(0, 2).join(' ')} work in this codebase?`
];
const aceResults = [];
for (const query of aceQueries) {
const result = await mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: query
});
aceResults.push({ query, result });
}
// Build context package for Gemini (kept in memory)
const aceContext = {
prompt_keywords: keywords,
codebase_structure: aceResults[0].result,
relevant_modules: aceResults.slice(1).map(r => r.result),
detected_patterns: extractPatterns(aceResults)
};
ACE Query Strategy by Intent Type:
| Intent | ACE Queries |
|---|---|
| comparison | "frontend API calls", "backend API handlers", "API contract definitions" |
| search | "{keyword} implementations", "{keyword} usage patterns" |
| verification | "expected behavior for {feature}", "test coverage for {feature}" |
| audit | "all {category} patterns", "{category} security concerns" |
Step 3.3: Gemini Strategy Planning
// Build Gemini planning prompt with ACE context
const planningPrompt = `
PURPOSE: Analyze discovery prompt and create exploration strategy based on codebase context
TASK:
• Parse user intent from prompt: "${prompt}"
• Use codebase context to identify specific modules and files to explore
• Create exploration dimensions with precise search targets
• Define comparison matrix structure (if comparison intent)
• Set success criteria and iteration strategy
MODE: analysis
CONTEXT: @${scope || '**/*'} | Discovery type: ${intentType}
## Codebase Context (from ACE semantic search)
${JSON.stringify(aceContext, null, 2)}
EXPECTED: JSON exploration plan:
{
"intent_analysis": { "type": "${intentType}", "primary_question": "...", "sub_questions": [...] },
"dimensions": [{ "name": "...", "description": "...", "search_targets": [...], "focus_areas": [...], "agent_prompt": "..." }],
"comparison_matrix": { "dimension_a": "...", "dimension_b": "...", "comparison_points": [...] },
"success_criteria": [...],
"estimated_iterations": N,
"termination_conditions": [...]
}
CONSTRAINTS: Use ACE context to inform targets | Focus on actionable plan
`;
// Execute Gemini planning
Bash({
command: `ccw cli -p "${planningPrompt}" --tool gemini --mode analysis`,
run_in_background: true,
timeout: 300000
});
// Parse and validate
const explorationPlan = await parseGeminiPlanOutput(geminiResult);
Gemini Planning Output Schema:
{
"intent_analysis": {
"type": "comparison|search|verification|audit",
"primary_question": "string",
"sub_questions": ["string"]
},
"dimensions": [
{
"name": "frontend",
"description": "Client-side API calls and error handling",
"search_targets": ["src/api/**", "src/hooks/**"],
"focus_areas": ["fetch calls", "error boundaries", "response parsing"],
"agent_prompt": "Explore frontend API consumption patterns..."
}
],
"comparison_matrix": {
"dimension_a": "frontend",
"dimension_b": "backend",
"comparison_points": [
{"aspect": "endpoints", "frontend_check": "fetch URLs", "backend_check": "route paths"},
{"aspect": "methods", "frontend_check": "HTTP methods used", "backend_check": "methods accepted"},
{"aspect": "payloads", "frontend_check": "request body structure", "backend_check": "expected schema"},
{"aspect": "responses", "frontend_check": "response parsing", "backend_check": "response format"},
{"aspect": "errors", "frontend_check": "error handling", "backend_check": "error responses"}
]
},
"success_criteria": ["All API endpoints mapped", "Discrepancies identified with file:line"],
"estimated_iterations": 3,
"termination_conditions": ["All comparison points verified", "Confidence > 0.8"]
}
Step 3.4: Iterative Agent Exploration (with ACE)
let iteration = 0;
let cumulativeFindings = [];
let sharedContext = { aceDiscoveries: [], crossReferences: [] };
let shouldContinue = true;
while (shouldContinue && iteration < maxIterations) {
iteration++;
const iterationDir = `${outputDir}/iterations/${iteration}`;
await mkdir(iterationDir, { recursive: true });
// ACE-assisted iteration planning
const iterationAceQueries = iteration === 1
? explorationPlan.dimensions.map(d => d.focus_areas[0])
: deriveQueriesFromFindings(cumulativeFindings);
const iterationAceResults = [];
for (const query of iterationAceQueries) {
const result = await mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: `${query} in ${explorationPlan.scope}`
});
iterationAceResults.push({ query, result });
}
sharedContext.aceDiscoveries.push(...iterationAceResults);
// Plan this iteration
const iterationPlan = planIteration(iteration, explorationPlan, cumulativeFindings, iterationAceResults);
// Step 1: Spawn dimension agents (parallel creation)
const dimensionAgents = [];
iterationPlan.dimensions.forEach(dimension => {
const agentId = spawn_agent({
message: buildDimensionPromptWithACE(dimension, iteration, cumulativeFindings, iterationAceResults, iterationDir)
});
dimensionAgents.push({ agentId, dimension });
});
// Step 2: Batch wait for all dimension agents
const dimensionAgentIds = dimensionAgents.map(a => a.agentId);
const iterationResults = wait({
ids: dimensionAgentIds,
timeout_ms: 600000 // 10 minutes
});
// Step 3: Check for timeouts
if (iterationResults.timed_out) {
console.log(`Iteration ${iteration}: some agents timed out, using completed results`);
}
// Step 4: Close all dimension agents
dimensionAgentIds.forEach(id => close_agent({ id }));
// Collect and analyze iteration findings
const iterationFindings = await collectIterationFindings(iterationDir, iterationPlan.dimensions);
// Cross-reference findings between dimensions
if (iterationPlan.dimensions.length > 1) {
const crossRefs = findCrossReferences(iterationFindings, iterationPlan.dimensions);
sharedContext.crossReferences.push(...crossRefs);
}
cumulativeFindings.push(...iterationFindings);
// Decide whether to continue
const convergenceCheck = checkConvergence(iterationFindings, cumulativeFindings, explorationPlan);
shouldContinue = !convergenceCheck.converged;
// Update state
await updateDiscoveryState(outputDir, {
iterations: [...state.iterations, {
number: iteration,
findings_count: iterationFindings.length,
ace_queries: iterationAceQueries.length,
cross_references: sharedContext.crossReferences.length,
new_discoveries: convergenceCheck.newDiscoveries,
confidence: convergenceCheck.confidence,
continued: shouldContinue
}],
cumulative_findings: cumulativeFindings
});
}
Iteration Loop:
┌─────────────────────────────────────────────────────────────┐
│ Iteration Loop │
├─────────────────────────────────────────────────────────────┤
│ 1. Plan: What to explore this iteration │
│ └─ Based on: previous findings + unexplored areas │
│ │
│ 2. Execute: Spawn agents for this iteration │
│ └─ Each agent: explore → collect → return summary │
│ └─ Lifecycle: spawn_agent → batch wait → close_agent │
│ │
│ 3. Analyze: Process iteration results │
│ └─ New findings? Gaps? Contradictions? │
│ │
│ 4. Decide: Continue or terminate │
│ └─ Terminate if: max iterations OR convergence OR │
│ high confidence on all questions │
└─────────────────────────────────────────────────────────────┘
Step 3.5: Cross-Analysis & Synthesis
// For comparison intent, perform cross-analysis
if (intentType === 'comparison' && explorationPlan.comparison_matrix) {
const comparisonResults = [];
for (const point of explorationPlan.comparison_matrix.comparison_points) {
const dimensionAFindings = cumulativeFindings.filter(f =>
f.related_dimension === explorationPlan.comparison_matrix.dimension_a &&
f.category.includes(point.aspect)
);
const dimensionBFindings = cumulativeFindings.filter(f =>
f.related_dimension === explorationPlan.comparison_matrix.dimension_b &&
f.category.includes(point.aspect)
);
const discrepancies = findDiscrepancies(dimensionAFindings, dimensionBFindings, point);
comparisonResults.push({
aspect: point.aspect,
dimension_a_count: dimensionAFindings.length,
dimension_b_count: dimensionBFindings.length,
discrepancies: discrepancies,
match_rate: calculateMatchRate(dimensionAFindings, dimensionBFindings)
});
}
await writeJson(`${outputDir}/comparison-analysis.json`, {
matrix: explorationPlan.comparison_matrix,
results: comparisonResults,
summary: {
total_discrepancies: comparisonResults.reduce((sum, r) => sum + r.discrepancies.length, 0),
overall_match_rate: average(comparisonResults.map(r => r.match_rate)),
critical_mismatches: comparisonResults.filter(r => r.match_rate < 0.5)
}
});
}
const prioritizedFindings = prioritizeFindings(cumulativeFindings, explorationPlan);
Step 3.6: Issue Generation & Summary
// Convert high-confidence findings to issues
const issueWorthy = prioritizedFindings.filter(f =>
f.confidence >= 0.7 || f.priority === 'critical' || f.priority === 'high'
);
const issues = issueWorthy.map(finding => ({
id: `ISS-${discoveryId}-${finding.id}`,
title: finding.title,
description: finding.description,
source: { discovery_id: discoveryId, finding_id: finding.id, dimension: finding.related_dimension },
file: finding.file,
line: finding.line,
priority: finding.priority,
category: finding.category,
confidence: finding.confidence,
status: 'discovered',
created_at: new Date().toISOString()
}));
await writeJsonl(`${outputDir}/discovery-issues.jsonl`, issues);
// Update final state
await updateDiscoveryState(outputDir, {
phase: 'complete',
updated_at: new Date().toISOString(),
results: {
total_iterations: iteration,
total_findings: cumulativeFindings.length,
issues_generated: issues.length,
comparison_match_rate: comparisonResults
? average(comparisonResults.map(r => r.match_rate))
: null
}
});
// Prompt user for next action
await AskUserQuestion({
questions: [{
question: `Discovery complete: ${issues.length} issues from ${cumulativeFindings.length} findings across ${iteration} iterations. What next?`,
header: "Next Step",
multiSelect: false,
options: [
{ label: "Export to Issues (Recommended)", description: `Export ${issues.length} issues for planning` },
{ label: "Review Details", description: "View comparison analysis and iteration details" },
{ label: "Run Deeper", description: "Continue with more iterations" },
{ label: "Skip", description: "Complete without exporting" }
]
}]
});
Dimension Agent Prompt Template
function buildDimensionPromptWithACE(dimension, iteration, previousFindings, aceResults, outputDir) {
const relevantAceResults = aceResults.filter(r =>
r.query.includes(dimension.name) || dimension.focus_areas.some(fa => r.query.includes(fa))
);
return `
## TASK ASSIGNMENT
### MANDATORY FIRST STEPS (Agent Execute)
1. **Read role definition**: ~/.codex/agents/cli-explore-agent.md (MUST read first)
2. Read: .workflow/project-tech.json
3. Read: .workflow/project-guidelines.json
---
## Task Objective
Explore ${dimension.name} dimension for issue discovery (Iteration ${iteration})
## Context
- Dimension: ${dimension.name}
- Description: ${dimension.description}
- Search Targets: ${dimension.search_targets.join(', ')}
- Focus Areas: ${dimension.focus_areas.join(', ')}
## ACE Semantic Search Results (Pre-gathered)
${JSON.stringify(relevantAceResults.map(r => ({ query: r.query, files: r.result.slice(0, 5) })), null, 2)}
**Use ACE for deeper exploration**: mcp__ace-tool__search_context available.
${iteration > 1 ? `
## Previous Findings to Build Upon
${summarizePreviousFindings(previousFindings, dimension.name)}
## This Iteration Focus
- Explore areas not yet covered
- Verify/deepen previous findings
- Follow leads from previous discoveries
` : ''}
## MANDATORY FIRST STEPS
1. Read schema: ~/.codex/workflows/cli-templates/schemas/discovery-finding-schema.json
2. Review ACE results above for starting points
3. Explore files identified by ACE
## Exploration Instructions
${dimension.agent_prompt}
## Output Requirements
**1. Write JSON file**: ${outputDir}/${dimension.name}.json
- findings: [{id, title, category, description, file, line, snippet, confidence, related_dimension}]
- coverage: {files_explored, areas_covered, areas_remaining}
- leads: [{description, suggested_search}]
- ace_queries_used: [{query, result_count}]
**2. Return summary**: Total findings, key discoveries, recommended next areas
`;
}
Output File Structure
.workflow/issues/discoveries/
└── {DBP-YYYYMMDD-HHmmss}/
├── discovery-state.json # Session state with iteration tracking
├── iterations/
│ ├── 1/
│ │ └── {dimension}.json # Dimension findings
│ ├── 2/
│ │ └── {dimension}.json
│ └── ...
├── comparison-analysis.json # Cross-dimension comparison (if applicable)
└── discovery-issues.jsonl # Generated issue candidates
Configuration Options
| Flag | Default | Description |
|---|---|---|
--scope |
**/* |
File pattern to explore |
--depth |
standard |
standard (3 iterations) or deep (5+ iterations) |
--max-iterations |
5 | Maximum exploration iterations |
--tool |
gemini |
Planning tool (gemini/qwen) |
--plan-only |
false |
Stop after Gemini planning, show plan |
Schema References
| Schema | Path | Used By |
|---|---|---|
| Discovery State | discovery-state-schema.json |
Orchestrator (state tracking) |
| Discovery Finding | discovery-finding-schema.json |
Dimension agents (output) |
| Exploration Plan | exploration-plan-schema.json |
Gemini output validation (memory only) |
Error Handling
| Error | Message | Resolution |
|---|---|---|
| Gemini planning failed | CLI error | Retry with qwen fallback |
| ACE search failed | No results | Fall back to file glob patterns |
| No findings after iterations | Convergence at 0 | Report clean status |
| Agent timeout | Exploration too large | Narrow scope, reduce iterations |
| Agent lifecycle error | Resource leak | Ensure close_agent in error paths |
Examples
# Single module deep dive
issue-discover --action discover-by-prompt "Find all potential issues in auth" --scope=src/auth/**
# API contract comparison
issue-discover --action discover-by-prompt "Check if API calls match implementations" --scope=src/**
# Plan only mode
issue-discover --action discover-by-prompt "Find inconsistent patterns" --plan-only
Post-Phase Update
After prompt-driven discovery:
- Findings aggregated across iterations with confidence scores
- Comparison analysis generated (if comparison intent)
- Issue candidates written to discovery-issues.jsonl
- Report: total iterations, findings, issues, match rate
- Recommend next step: Export → issue-resolve (plan solutions)