Files
Claude-Code-Workflow/.claude/skills/skill-generator/templates/llm-action.md
catlog22 9762445876 refactor: Convert skill-generator from Chinese to English and remove emoji icons
- Convert all markdown files from Chinese to English
- Remove all emoji/icon decorations (🔧📋⚙️🏁🔍📚)
- Update all section headers, descriptions, and documentation
- Keep all content logic, structure, code examples unchanged
- Maintain template variables and file paths as-is

Files converted (9 files total):
- SKILL.md: Output structure comments
- templates/skill-md.md: All Chinese descriptions and comments
- specs/reference-docs-spec.md: All section headers and explanations
- phases/01-requirements-discovery.md through 05-validation.md (5 files)
- specs/execution-modes.md, skill-requirements.md, cli-integration.md, scripting-integration.md (4 files)
- templates/sequential-phase.md, autonomous-orchestrator.md, autonomous-action.md, code-analysis-action.md, llm-action.md, script-template.md (6 files)

All 16 files in skill-generator are now fully in English.
2026-01-29 15:42:46 +08:00

368 lines
8.7 KiB
Markdown

# LLM Action Template
LLM action template for integrating LLM call capabilities into a Skill.
## Purpose
Generate LLM actions for a Skill, call Gemini/Qwen/Codex through CCW CLI unified interface for analysis or generation.
## Usage Context
| Phase | Usage |
|-------|-------|
| Optional | Use when Skill requires LLM capabilities |
| Generation Trigger | User selects to add llm action type |
| Tools | gemini, qwen, codex (supports fallback chain) |
---
## Configuration Structure
```typescript
interface LLMActionConfig {
id: string; // "llm-analyze", "llm-generate"
name: string; // "LLM Analysis"
type: 'llm'; // Action type identifier
// LLM tool config
tool: {
primary: 'gemini' | 'qwen' | 'codex';
fallback_chain: string[]; // ['gemini', 'qwen', 'codex']
};
// Execution mode
mode: 'analysis' | 'write';
// Prompt config
prompt: {
template: string; // Prompt template path or inline
variables: string[]; // Variables to replace
};
// Input/Output
input: string[]; // Dependent context files
output: string; // Output file path
// Timeout config
timeout?: number; // Milliseconds, default 600000 (10min)
}
```
---
## Template Generation Function
```javascript
function generateLLMAction(config) {
const { id, name, tool, mode, prompt, input, output, timeout = 600000 } = config;
return `
# ${name}
## Action: ${id}
### Execution Logic
\`\`\`javascript
async function execute${toPascalCase(id)}(context) {
const workDir = context.workDir;
const state = context.state;
// 1. Collect input context
const inputContext = ${JSON.stringify(input)}.map(f => {
const path = \`\${workDir}/\${f}\`;
return Read(path);
}).join('\\n\\n---\\n\\n');
// 2. Build prompt
const promptTemplate = \`${prompt.template}\`;
const finalPrompt = promptTemplate
${prompt.variables.map(v => `.replace('{{${v}}}', context.${v} || '')`).join('\n ')};
// 3. Execute LLM call (with fallback)
const tools = ['${tool.primary}', ${tool.fallback_chain.map(t => `'${t}'`).join(', ')}];
let result = null;
let usedTool = null;
for (const t of tools) {
try {
result = await callLLM(t, finalPrompt, '${mode}', ${timeout});
usedTool = t;
break;
} catch (error) {
console.log(\`\${t} failed: \${error.message}, trying next...\`);
}
}
if (!result) {
throw new Error('All LLM tools failed');
}
// 4. Save result
Write(\`\${workDir}/${output}\`, result);
// 5. Update state
state.llm_calls = (state.llm_calls || 0) + 1;
state.last_llm_tool = usedTool;
return {
success: true,
output: '${output}',
tool_used: usedTool
};
}
// LLM call wrapper
async function callLLM(tool, prompt, mode, timeout) {
const modeFlag = mode === 'write' ? '--mode write' : '--mode analysis';
// Use CCW CLI unified interface
const command = \`ccw cli -p "\${escapePrompt(prompt)}" --tool \${tool} \${modeFlag}\`;
const result = Bash({
command,
timeout,
run_in_background: true // Async execution
});
// Wait for completion
return await waitForResult(result.task_id, timeout);
}
function escapePrompt(prompt) {
// Escape double quotes and special characters
return prompt.replace(/"/g, '\\\\"').replace(/\$/g, '\\\\$');
}
\`\`\`
### Prompt Template
\`\`\`
${prompt.template}
\`\`\`
### Variable Descriptions
${prompt.variables.map(v => `- \`{{${v}}}\`: ${v} variable`).join('\n')}
`;
}
function toPascalCase(str) {
return str.split('-').map(s => s.charAt(0).toUpperCase() + s.slice(1)).join('');
}
```
---
## Preset LLM Action Templates
### 1. Code Analysis Action
\`\`\`yaml
id: llm-code-analysis
name: LLM Code Analysis
type: llm
tool:
primary: gemini
fallback_chain: [qwen]
mode: analysis
prompt:
template: |
PURPOSE: Analyze code structure and patterns, extract key design features
TASK:
• Identify main modules and components
• Analyze dependencies
• Extract design patterns
• Evaluate code quality
MODE: analysis
CONTEXT: {{code_context}}
EXPECTED: JSON formatted analysis report with modules, dependencies, patterns, quality_score
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md)
variables:
- code_context
input:
- collected-code.md
output: analysis-report.json
timeout: 900000
\`\`\`
### 2. Documentation Generation Action
\`\`\`yaml
id: llm-doc-generation
name: LLM Documentation Generation
type: llm
tool:
primary: gemini
fallback_chain: [qwen, codex]
mode: write
prompt:
template: |
PURPOSE: Generate high-quality documentation based on analysis results
TASK:
• Generate documentation outline based on analysis report
• Populate chapter content
• Add code examples and explanations
• Generate Mermaid diagrams
MODE: write
CONTEXT: {{analysis_report}}
EXPECTED: Complete Markdown documentation with table of contents, chapters, diagrams
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/write-protocol.md)
variables:
- analysis_report
input:
- analysis-report.json
output: generated-doc.md
timeout: 1200000
\`\`\`
### 3. Code Refactoring Suggestions Action
\`\`\`yaml
id: llm-refactor-suggest
name: LLM Refactoring Suggestions
type: llm
tool:
primary: codex
fallback_chain: [gemini]
mode: analysis
prompt:
template: |
PURPOSE: Analyze code and provide refactoring suggestions
TASK:
• Identify code smells
• Evaluate complexity hotspots
• Propose specific refactoring plans
• Estimate refactoring impact scope
MODE: analysis
CONTEXT: {{source_code}}
EXPECTED: List of refactoring suggestions with location, issue, suggestion, impact fields
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md)
variables:
- source_code
input:
- source-files.md
output: refactor-suggestions.json
timeout: 600000
\`\`\`
---
## Usage Examples
### Using LLM Actions in Phase
\`\`\`javascript
// phases/02-llm-analysis.md
const llmConfig = {
id: 'llm-analyze-skill',
name: 'Skill Pattern Analysis',
type: 'llm',
tool: {
primary: 'gemini',
fallback_chain: ['qwen']
},
mode: 'analysis',
prompt: {
template: \`
PURPOSE: Analyze design patterns of existing Skills
TASK:
• Extract Skill structure specification
• Identify Phase organization patterns
• Analyze Agent invocation patterns
MODE: analysis
CONTEXT: {{skill_source}}
EXPECTED: Structured design pattern analysis
\`,
variables: ['skill_source']
},
input: ['collected-skills.md'],
output: 'skill-patterns.json'
};
// Execute
const result = await executeLLMAction(llmConfig, {
workDir: '.workflow/.scratchpad/skill-gen-xxx',
skill_source: Read('.workflow/.scratchpad/skill-gen-xxx/collected-skills.md')
});
\`\`\`
### Scheduling LLM Actions in Orchestrator
\`\`\`javascript
// Schedule LLM actions in autonomous-orchestrator
const actions = [
{ type: 'collect', priority: 100 },
{ type: 'llm', id: 'llm-analyze', priority: 90 }, // LLM analysis
{ type: 'process', priority: 80 },
{ type: 'llm', id: 'llm-generate', priority: 70 }, // LLM generation
{ type: 'validate', priority: 60 }
];
for (const action of sortByPriority(actions)) {
if (action.type === 'llm') {
const llmResult = await executeLLMAction(
getLLMConfig(action.id),
context
);
context.state[action.id] = llmResult;
}
}
\`\`\`
---
## Error Handling
\`\`\`javascript
async function executeLLMActionWithRetry(config, context, maxRetries = 3) {
let lastError = null;
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
return await executeLLMAction(config, context);
} catch (error) {
lastError = error;
console.log(\`Attempt ${attempt} failed: ${error.message}\`);
// Exponential backoff
if (attempt < maxRetries) {
await sleep(Math.pow(2, attempt) * 1000);
}
}
}
// All retries failed
return {
success: false,
error: lastError.message,
fallback: 'manual_review_required'
};
}
\`\`\`
---
## Best Practices
1. **Select Appropriate Tool**
- Analysis tasks: Gemini (large context) > Qwen
- Generation tasks: Codex (autonomous execution) > Gemini > Qwen
- Code modification: Codex > Gemini
2. **Configure Fallback Chain**
- Always configure at least one fallback
- Consider tool characteristics when ordering fallbacks
3. **Timeout Settings**
- Analysis tasks: 10-15 minutes
- Generation tasks: 15-20 minutes
- Complex tasks: 20-60 minutes
4. **Prompt Design**
- Use PURPOSE/TASK/MODE/CONTEXT/EXPECTED/RULES structure
- Reference standard protocol templates
- Clearly specify output format requirements