Files
Claude-Code-Workflow/.claude/commands/memory/load.md
catlog22 3da0ef2adb Add comprehensive tests for query parsing and Reciprocal Rank Fusion
- Implemented tests for the QueryParser class, covering various identifier splitting methods (CamelCase, snake_case, kebab-case), OR expansion, and FTS5 operator preservation.
- Added parameterized tests to validate expected token outputs for different query formats.
- Created edge case tests to ensure robustness against unusual input scenarios.
- Developed tests for the Reciprocal Rank Fusion (RRF) algorithm, including score computation, weight handling, and result ranking across multiple sources.
- Included tests for normalization of BM25 scores and tagging search results with source metadata.
2025-12-16 10:20:19 +08:00

7.5 KiB

name, description, argument-hint, allowed-tools, examples
name description argument-hint allowed-tools examples
load Delegate to universal-executor agent to analyze project via Gemini/Qwen CLI and return JSON core content package for task context [--tool gemini|qwen] "task context description" Task(*), Bash(*)
/memory:load "在当前前端基础上开发用户认证功能"
/memory:load --tool qwen "重构支付模块API"

Memory Load Command (/memory:load)

1. Overview

The memory:load command delegates to a universal-executor agent to analyze the project and return a structured "Core Content Pack". This pack is loaded into the main thread's memory, providing essential context for subsequent agent operations while minimizing token consumption.

Core Philosophy:

  • Agent-Driven: Fully delegates execution to universal-executor agent
  • Read-Only Analysis: Does not modify code, only extracts context
  • Structured Output: Returns standardized JSON content package
  • Memory Optimization: Package loaded directly into main thread memory
  • Token Efficiency: CLI analysis executed within agent to save tokens

2. Parameters

  • "task context description" (Required): Task description to guide context extraction

    • Example: "在当前前端基础上开发用户认证功能"
    • Example: "重构支付模块API"
    • Example: "修复数据库查询性能问题"
  • --tool <gemini|qwen> (Optional): Specify CLI tool for agent to use (default: gemini)

    • gemini: Large context window, suitable for complex project analysis
    • qwen: Alternative to Gemini with similar capabilities

3. Agent-Driven Execution Flow

The command fully delegates to universal-executor agent, which autonomously:

  1. Analyzes Project Structure: Executes get_modules_by_depth.sh to understand architecture
  2. Loads Documentation: Reads CLAUDE.md, README.md and other key docs
  3. Extracts Keywords: Derives core keywords from task description
  4. Discovers Files: Uses CodexLens MCP or rg/find to locate relevant files
  5. CLI Deep Analysis: Executes Gemini/Qwen CLI for deep context analysis
  6. Generates Content Package: Returns structured JSON core content package

4. Core Content Package Structure

Output Format - Loaded into main thread memory for subsequent use:

{
  "task_context": "在当前前端基础上开发用户认证功能",
  "keywords": ["前端", "用户", "认证", "auth", "login"],
  "project_summary": {
    "architecture": "TypeScript + React frontend with Vite build system",
    "tech_stack": ["React", "TypeScript", "Vite", "TailwindCSS"],
    "key_patterns": [
      "State management via Context API",
      "Functional components with Hooks pattern",
      "API calls encapsulated in custom hooks"
    ]
  },
  "relevant_files": [
    {
      "path": "src/components/Auth/LoginForm.tsx",
      "relevance": "Existing login form component",
      "priority": "high"
    },
    {
      "path": "src/contexts/AuthContext.tsx",
      "relevance": "Authentication state management context",
      "priority": "high"
    },
    {
      "path": "CLAUDE.md",
      "relevance": "Project development standards",
      "priority": "high"
    }
  ],
  "integration_points": [
    "Must integrate with existing AuthContext",
    "Follow component organization pattern: src/components/[Feature]/",
    "API calls should use src/hooks/useApi.ts wrapper"
  ],
  "constraints": [
    "Maintain backward compatibility",
    "Follow TypeScript strict mode",
    "Use existing UI component library"
  ]
}

5. Agent Invocation

Task(
  subagent_type="universal-executor",
  description="Load project memory: ${task_description}",
  prompt=`
## Mission: Load Project Memory Context

**Task**: Load project memory context for: "${task_description}"
**Mode**: analysis
**Tool Preference**: ${tool || 'gemini'}

## Execution Steps

### Step 1: Foundation Analysis

1. **Project Structure**
   \`\`\`bash
   bash(ccw tool exec get_modules_by_depth '{}')
   \`\`\`

2. **Core Documentation**
   \`\`\`javascript
   Read(CLAUDE.md)
   Read(README.md)
   \`\`\`

### Step 2: Keyword Extraction & File Discovery

1. Extract core keywords from task description
2. Discover relevant files using ripgrep and find:
   \`\`\`bash
   # Find files by name
   find . -name "*{keyword}*" -type f

   # Search content with ripgrep
   rg "{keyword}" --type ts --type md -C 2
   rg -l "{keyword}" --type ts --type md  # List files only
   \`\`\`

### Step 3: Deep Analysis via CLI

Execute Gemini/Qwen CLI for deep analysis (saves main thread tokens):

\`\`\`bash
ccw cli exec "
PURPOSE: Extract project core context for task: ${task_description}
TASK: Analyze project architecture, tech stack, key patterns, relevant files
MODE: analysis
CONTEXT: @CLAUDE.md,README.md @${discovered_files}
EXPECTED: Structured project summary and integration point analysis
RULES:
- Focus on task-relevant core information
- Identify key architecture patterns and technical constraints
- Extract integration points and development standards
- Output concise, structured format
" --tool ${tool} --mode analysis
\`\`\`

### Step 4: Generate Core Content Package

Generate structured JSON content package (format shown above)

**Required Fields**:
- task_context: Original task description
- keywords: Extracted keyword array
- project_summary: Architecture, tech stack, key patterns
- relevant_files: File list with path, relevance, priority
- integration_points: Integration guidance
- constraints: Development constraints

### Step 5: Return Content Package

Return JSON content package as final output for main thread to load into memory.

## Quality Checklist

Before returning:
- [ ] Valid JSON format
- [ ] All required fields complete
- [ ] relevant_files contains 3-10 files minimum
- [ ] project_summary accurately reflects architecture
- [ ] integration_points clearly specify integration paths
- [ ] keywords accurately extracted (3-8 keywords)
- [ ] Content concise, avoiding redundancy (< 5KB total)

  `
)

6. Usage Examples

Example 1: Load Context for New Feature

/memory:load "在当前前端基础上开发用户认证功能"

Agent Execution:

  1. Analyzes project structure (get_modules_by_depth.sh)
  2. Reads CLAUDE.md, README.md
  3. Extracts keywords: ["前端", "用户", "认证", "auth"]
  4. Uses MCP to search relevant files
  5. Executes Gemini CLI for deep analysis
  6. Returns core content package

Returned Package (loaded into memory):

{
  "task_context": "在当前前端基础上开发用户认证功能",
  "keywords": ["前端", "认证", "auth", "login"],
  "project_summary": { ... },
  "relevant_files": [ ... ],
  "integration_points": [ ... ],
  "constraints": [ ... ]
}

Example 2: Using Qwen Tool

/memory:load --tool qwen "重构支付模块API"

Agent uses Qwen CLI for analysis, returns same structured package.

Example 3: Bug Fix Context

/memory:load "修复登录验证错误"

Returns core context related to login validation, including test files and validation logic.

Memory Persistence

  • Session-Scoped: Content package valid for current session
  • Subsequent Reference: All subsequent agents/commands can access
  • Reload Required: New sessions need to re-execute /memory:load

8. Notes

  • Read-Only: Does not modify any code, pure analysis
  • Token Optimization: CLI analysis executed within agent, saves main thread tokens
  • Memory Loading: Returned JSON loaded directly into main thread memory
  • Subsequent Use: Other commands/agents can reference this package for development
  • Session-Level: Content package valid for current session