mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Transform from command reference to strategic decision framework - Add core framework with decision principles and execution rules - Include universal command template with PURPOSE/TASK/CONTEXT/EXPECTED structure - Add tool selection matrix and workflow integration patterns - Include planning checklist and best practices sections - Add hierarchical vector system details and migration benefits - Provide quick setup guide and decision framework 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
7.9 KiB
7.9 KiB
name, description, type
| name | description | type |
|---|---|---|
| python-tools-strategy | Strategic framework for Python-based intelligent tool selection | strategic-guideline |
Python Tools Selection Strategy
⚡ Core Framework
Python CLI (pycli): Unified interface for intelligent context discovery and tool execution Vector Database: Hierarchical semantic search with automatic parent discovery Smart Analysis: Context-aware file selection with similarity scoring
Decision Principles
- Context first - Use vector search for intelligent file discovery
- Hierarchical by default - Leverage parent directory vector databases automatically
- Semantic over syntactic - Find relevant code by meaning, not just keywords
- Tool integration - Seamlessly combine context discovery with Gemini/Codex execution
Quick Decision Rules
- Need context discovery? → Start with
pycli --analyze --query - Know exact files? → Use
pycli --analyze -pdirectly - First time in project? → Run
pycli --initfirst - Files changed? → Update with
pycli --update-embeddings
Core Execution Rules
- Default Tool: Gemini for analysis, Codex for development
- Similarity Threshold: 0.3 minimum for relevant results
- Hierarchical Search: Automatic parent directory vector database discovery
- Command Pattern: Always use
pycliwrapper for consistent interface
🎯 Universal Command Template
Standard Format (REQUIRED)
# Smart Context Discovery
pycli --analyze --query "
PURPOSE: [clear analysis goal]
SEARCH: [semantic search terms]
TOOL: [gemini/codex/both]
EXPECTED: [expected context and output]
" --tool [gemini/codex]
# Direct Tool Execution
pycli --analyze --tool [gemini/codex] -p "
PURPOSE: [clear execution goal]
TASK: [specific execution task]
CONTEXT: [known file references]
EXPECTED: [expected deliverables]
"
Template Structure
- PURPOSE - Clear goal and intent for analysis
- SEARCH/TASK - Semantic search terms or specific task
- TOOL - Gemini for analysis, Codex for development
- CONTEXT - File references and project context
- EXPECTED - Clear expected results and format
📊 Tool Selection Matrix
| Task Type | Command | Use Case | Context Strategy |
|---|---|---|---|
| Context Discovery | pycli --analyze --query |
Code exploration, pattern finding | Vector similarity search |
| Targeted Analysis | pycli --analyze --tool gemini -p |
Architecture review, understanding | Known file analysis |
| Development | pycli --analyze --tool codex -p |
Feature implementation, bug fixes | Smart context + execution |
| Setup | pycli --init |
Project initialization | Vector database creation |
| Maintenance | pycli --update-embeddings |
Index updates after changes | Incremental vectorization |
| Health Check | pycli --status |
System verification | Database validation |
🚀 Usage Patterns
Workflow Integration (REQUIRED)
When planning any coding task, ALWAYS integrate Python CLI tools:
- Discovery Phase: Use
pycli --analyze --queryfor context - Analysis Phase: Use Gemini for understanding with smart context
- Implementation Phase: Use Codex for development with relevant files
- Validation Phase: Update embeddings and verify results
Common Scenarios
# Project Context Discovery
pycli --analyze --query "
PURPOSE: Understand authentication architecture
SEARCH: authentication patterns, login systems, user management
TOOL: gemini
EXPECTED: Architecture overview and key implementation files
" --tool gemini
# Feature Development with Context
pycli --analyze --query "
PURPOSE: Implement user registration
SEARCH: user creation, validation patterns, database models
TOOL: codex
EXPECTED: Complete registration module with tests
" --tool codex
# Code Quality Analysis
pycli --analyze --query "
PURPOSE: Review error handling patterns
SEARCH: exception handling, error middleware, logging
TOOL: gemini
EXPECTED: Error handling assessment and recommendations
" --tool gemini
📋 Planning Checklist
For every development task:
- Discovery completed - Context discovery with vector search
- Purpose defined - Clear goal and intent documented
- Tool selected - Gemini for analysis, Codex for development
- Context gathered - Relevant files identified through similarity
- Template applied - Standard command format used
- Embeddings updated - Vector database reflects current state
- Results validated - Output quality and relevance verified
🎯 Key Features
Python CLI (pycli)
- Command:
pycli --analyze - Strengths: Hierarchical vector search, semantic similarity, context discovery
- Best For: Intelligent file selection, context-aware analysis, project exploration
Vector Database
- Hierarchical: Automatic parent directory discovery
- Semantic: Meaning-based similarity scoring
- Efficient: Incremental updates and smart caching
- Scalable: Project-wide context with subdirectory support
Context Patterns
- Query-based:
--query "semantic search terms" - Direct prompt:
-p "specific task" - Tool selection:
--tool [gemini|codex|both] - Similarity control:
--top-k N --similarity-threshold X
🔧 Best Practices
- Start with discovery - Use
--queryfor context before direct prompts - Be semantic - Use meaning-based search terms, not just keywords
- Update regularly - Run
--update-embeddingsafter file changes - Validate context - Check similarity scores and relevance before proceeding
- Document patterns - Reference successful query patterns for reuse
- Leverage hierarchy - Work in subdirectories, let parent DBs provide context
📁 Hierarchical Vector System
Base Structure: ~/.claude/vector_db/[project-path]/
Automatic Discovery
Project Structure Vector Database Usage
/project/ Creates: ~/.claude/vector_db/project/
├── src/ → Uses parent DB automatically
│ ├── auth/ → Uses parent DB automatically
│ └── api/ → Uses parent DB automatically
└── tests/ → Uses parent DB automatically
Smart Context Integration
- Parent Discovery: Subdirectories automatically use parent vector DB
- Semantic Search: Find files by meaning, not just filename patterns
- Similarity Scoring: Relevance-based file selection with configurable thresholds
- Incremental Updates: Efficient re-indexing of only changed files
Migration Benefits
# Enhanced Context Discovery (vs traditional grep/find)
# OLD: find . -name "*auth*" | head -10
# NEW: pycli --analyze --query "authentication patterns" --tool gemini
# OLD: grep -r "login" src/ | head -20
# NEW: pycli --analyze --query "login implementation" --tool codex
# OLD: ~/.claude/scripts/gemini-wrapper -p "analyze auth"
# NEW: pycli --analyze --query "authentication architecture" --tool gemini
🎯 Quick Setup Guide
Project Setup (One-time per project)
# 1. Navigate to project root
cd /path/to/project
# 2. Initialize vector database
pycli --init
# 3. Verify setup
pycli --status
Daily Workflow
# 1. Update embeddings (after file changes)
pycli --update-embeddings
# 2. Smart context discovery
pycli --analyze --query "your search terms" --tool gemini
# 3. Targeted development
pycli --analyze --query "implementation patterns" --tool codex
🎪 Decision Framework
Need intelligent code analysis?
├─ Know specific files to analyze?
│ ├─ YES → pycli --analyze --tool [gemini/codex] -p "prompt"
│ └─ NO → pycli --analyze --query "semantic search" --tool [gemini/codex]
├─ Vector database updated?
│ ├─ UNSURE → pycli --status
│ ├─ NO → pycli --update-embeddings
│ └─ YES → Proceed with analysis
└─ First time in project?
└─ Run pycli --init first