Files
Claude-Code-Workflow/.claude/commands/memory/load.md
catlog22 920b179440 docs: 更新所有命令描述并重新生成索引文件
- 更新所有69个命令文件的description字段,基于实际功能重新生成详细描述
- 重新生成5个索引文件(all-commands, by-category, by-use-case, essential-commands, command-relationships)
- 移动analyze_commands.py到scripts/目录并完善功能
- 移除临时备份文件

命令描述改进示例:
- workflow:plan: 增加了工具和代理的详细说明(Gemini, action-planning-agent)
- cli:execute: 说明了YOLO权限和多种执行模式
- memory:update-related: 详细说明了批处理策略和工具回退链

索引文件改进:
- usage_scenario从2种扩展到10种(更精细分类)
- command-relationships覆盖所有69个命令
- 区分built-in(内置调用)和sequential(用户顺序执行)关系

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-06 15:11:31 +08:00

241 lines
7.5 KiB
Markdown

---
name: load
description: Delegate to universal-executor agent to analyze project via Gemini/Qwen CLI and return JSON core content package for task context
argument-hint: "[--tool gemini|qwen] \"task context description\""
allowed-tools: Task(*), Bash(*)
examples:
- /memory:load "在当前前端基础上开发用户认证功能"
- /memory:load --tool qwen -p "重构支付模块API"
---
# Memory Load Command (/memory:load)
## 1. Overview
The `memory:load` command **delegates to a universal-executor agent** to analyze the project and return a structured "Core Content Pack". This pack is loaded into the main thread's memory, providing essential context for subsequent agent operations while minimizing token consumption.
**Core Philosophy**:
- **Agent-Driven**: Fully delegates execution to universal-executor agent
- **Read-Only Analysis**: Does not modify code, only extracts context
- **Structured Output**: Returns standardized JSON content package
- **Memory Optimization**: Package loaded directly into main thread memory
- **Token Efficiency**: CLI analysis executed within agent to save tokens
## 2. Parameters
- `"task context description"` (Required): Task description to guide context extraction
- Example: "在当前前端基础上开发用户认证功能"
- Example: "重构支付模块API"
- Example: "修复数据库查询性能问题"
- `--tool <gemini|qwen>` (Optional): Specify CLI tool for agent to use (default: gemini)
- gemini: Large context window, suitable for complex project analysis
- qwen: Alternative to Gemini with similar capabilities
## 3. Agent-Driven Execution Flow
The command fully delegates to **universal-executor agent**, which autonomously:
1. **Analyzes Project Structure**: Executes `get_modules_by_depth.sh` to understand architecture
2. **Loads Documentation**: Reads CLAUDE.md, README.md and other key docs
3. **Extracts Keywords**: Derives core keywords from task description
4. **Discovers Files**: Uses MCP code-index or rg/find to locate relevant files
5. **CLI Deep Analysis**: Executes Gemini/Qwen CLI for deep context analysis
6. **Generates Content Package**: Returns structured JSON core content package
## 4. Core Content Package Structure
**Output Format** - Loaded into main thread memory for subsequent use:
```json
{
"task_context": "在当前前端基础上开发用户认证功能",
"keywords": ["前端", "用户", "认证", "auth", "login"],
"project_summary": {
"architecture": "TypeScript + React frontend with Vite build system",
"tech_stack": ["React", "TypeScript", "Vite", "TailwindCSS"],
"key_patterns": [
"State management via Context API",
"Functional components with Hooks pattern",
"API calls encapsulated in custom hooks"
]
},
"relevant_files": [
{
"path": "src/components/Auth/LoginForm.tsx",
"relevance": "Existing login form component",
"priority": "high"
},
{
"path": "src/contexts/AuthContext.tsx",
"relevance": "Authentication state management context",
"priority": "high"
},
{
"path": "CLAUDE.md",
"relevance": "Project development standards",
"priority": "high"
}
],
"integration_points": [
"Must integrate with existing AuthContext",
"Follow component organization pattern: src/components/[Feature]/",
"API calls should use src/hooks/useApi.ts wrapper"
],
"constraints": [
"Maintain backward compatibility",
"Follow TypeScript strict mode",
"Use existing UI component library"
]
}
```
## 5. Agent Invocation
```javascript
Task(
subagent_type="universal-executor",
description="Load project memory: ${task_description}",
prompt=`
## Mission: Load Project Memory Context
**Task**: Load project memory context for: "${task_description}"
**Mode**: analysis
**Tool Preference**: ${tool || 'gemini'}
## Execution Steps
### Step 1: Foundation Analysis
1. **Project Structure**
\`\`\`bash
bash(~/.claude/scripts/get_modules_by_depth.sh)
\`\`\`
2. **Core Documentation**
\`\`\`javascript
Read(CLAUDE.md)
Read(README.md)
\`\`\`
### Step 2: Keyword Extraction & File Discovery
1. Extract core keywords from task description
2. Discover relevant files using ripgrep and find:
\`\`\`bash
# Find files by name
find . -name "*{keyword}*" -type f
# Search content with ripgrep
rg "{keyword}" --type ts --type md -C 2
rg -l "{keyword}" --type ts --type md # List files only
\`\`\`
### Step 3: Deep Analysis via CLI
Execute Gemini/Qwen CLI for deep analysis (saves main thread tokens):
\`\`\`bash
cd . && ${tool} -p "
PURPOSE: Extract project core context for task: ${task_description}
TASK: Analyze project architecture, tech stack, key patterns, relevant files
MODE: analysis
CONTEXT: @CLAUDE.md,README.md @${discovered_files}
EXPECTED: Structured project summary and integration point analysis
RULES:
- Focus on task-relevant core information
- Identify key architecture patterns and technical constraints
- Extract integration points and development standards
- Output concise, structured format
"
\`\`\`
### Step 4: Generate Core Content Package
Generate structured JSON content package (format shown above)
**Required Fields**:
- task_context: Original task description
- keywords: Extracted keyword array
- project_summary: Architecture, tech stack, key patterns
- relevant_files: File list with path, relevance, priority
- integration_points: Integration guidance
- constraints: Development constraints
### Step 5: Return Content Package
Return JSON content package as final output for main thread to load into memory.
## Quality Checklist
Before returning:
- [ ] Valid JSON format
- [ ] All required fields complete
- [ ] relevant_files contains 3-10 files minimum
- [ ] project_summary accurately reflects architecture
- [ ] integration_points clearly specify integration paths
- [ ] keywords accurately extracted (3-8 keywords)
- [ ] Content concise, avoiding redundancy (< 5KB total)
`
)
```
## 6. Usage Examples
### Example 1: Load Context for New Feature
```bash
/memory:load "在当前前端基础上开发用户认证功能"
```
**Agent Execution**:
1. Analyzes project structure (`get_modules_by_depth.sh`)
2. Reads CLAUDE.md, README.md
3. Extracts keywords: ["前端", "用户", "认证", "auth"]
4. Uses MCP to search relevant files
5. Executes Gemini CLI for deep analysis
6. Returns core content package
**Returned Package** (loaded into memory):
```json
{
"task_context": "在当前前端基础上开发用户认证功能",
"keywords": ["前端", "认证", "auth", "login"],
"project_summary": { ... },
"relevant_files": [ ... ],
"integration_points": [ ... ],
"constraints": [ ... ]
}
```
### Example 2: Using Qwen Tool
```bash
/memory:load --tool qwen -p "重构支付模块API"
```
Agent uses Qwen CLI for analysis, returns same structured package.
### Example 3: Bug Fix Context
```bash
/memory:load "修复登录验证错误"
```
Returns core context related to login validation, including test files and validation logic.
### Memory Persistence
- **Session-Scoped**: Content package valid for current session
- **Subsequent Reference**: All subsequent agents/commands can access
- **Reload Required**: New sessions need to re-execute /memory:load
## 8. Notes
- **Read-Only**: Does not modify any code, pure analysis
- **Token Optimization**: CLI analysis executed within agent, saves main thread tokens
- **Memory Loading**: Returned JSON loaded directly into main thread memory
- **Subsequent Use**: Other commands/agents can reference this package for development
- **Session-Level**: Content package valid for current session