Files
Claude-Code-Workflow/.claude/commands/issue/plan.md

13 KiB

name, description, argument-hint, allowed-tools
name description argument-hint allowed-tools
plan Batch plan issue resolution using issue-plan-agent (explore + plan closed-loop) --all-pending <issue-id>[,<issue-id>,...] [--batch-size 3] TodoWrite(*), Task(*), SlashCommand(*), AskUserQuestion(*), Bash(*), Read(*), Write(*)

Issue Plan Command (/issue:plan)

Overview

Unified planning command using issue-plan-agent that combines exploration and planning into a single closed-loop workflow.

Output Requirements

Generate Files:

  1. .workflow/issues/solutions/{issue-id}.jsonl - Solution with tasks for each issue

Return Summary:

{
  "bound": [{ "issue_id": "...", "solution_id": "...", "task_count": N }],
  "pending_selection": [{ "issue_id": "...", "solutions": [...] }],
  "conflicts": [{ "file": "...", "issues": [...] }]
}

Completion Criteria:

  • Solution file generated for each issue
  • Single solution → auto-bound via ccw issue bind
  • Multiple solutions → returned for user selection
  • Tasks conform to schema: cat .claude/workflows/cli-templates/schemas/solution-schema.json
  • Each task has quantified acceptance.criteria

Core Capabilities

  • Closed-loop agent: issue-plan-agent combines explore + plan
  • Batch processing: 1 agent processes 1-3 issues
  • ACE semantic search integrated into planning
  • Solution with executable tasks and delivery criteria
  • Automatic solution registration and binding

Storage Structure (Flat JSONL)

.workflow/issues/
├── issues.jsonl              # All issues (one per line)
├── queue.json                # Execution queue
└── solutions/
    ├── {issue-id}.jsonl      # Solutions for issue (one per line)
    └── ...

Usage

/issue:plan <issue-id>[,<issue-id>,...] [FLAGS]

# Examples
/issue:plan GH-123                    # Single issue
/issue:plan GH-123,GH-124,GH-125      # Batch (up to 3)
/issue:plan --all-pending             # All pending issues

# Flags
--batch-size <n>      Max issues per agent batch (default: 3)

Execution Process

Phase 1: Issue Loading
   ├─ Parse input (single, comma-separated, or --all-pending)
   ├─ Fetch issue metadata (ID, title, tags)
   ├─ Validate issues exist (create if needed)
   └─ Group by similarity (shared tags or title keywords, max 3 per batch)

Phase 2: Unified Explore + Plan (issue-plan-agent)
   ├─ Launch issue-plan-agent per batch
   ├─ Agent performs:
   │   ├─ ACE semantic search for each issue
   │   ├─ Codebase exploration (files, patterns, dependencies)
   │   ├─ Solution generation with task breakdown
   │   └─ Conflict detection across issues
   └─ Output: solution JSON per issue

Phase 3: Solution Registration & Binding
   ├─ Append solutions to solutions/{issue-id}.jsonl
   ├─ Single solution per issue → auto-bind
   ├─ Multiple candidates → AskUserQuestion to select
   └─ Update issues.jsonl with bound_solution_id

Phase 4: Summary
   ├─ Display bound solutions
   ├─ Show task counts per issue
   └─ Display next steps (/issue:queue)

Implementation

Phase 1: Issue Loading (ID + Title + Tags)

const batchSize = flags.batchSize || 3;
let issues = [];  // {id, title, tags}

if (flags.allPending) {
  // Get pending issues with metadata via CLI (JSON output)
  const result = Bash(`ccw issue list --status pending,registered --json`).trim();
  const parsed = result ? JSON.parse(result) : [];
  issues = parsed.map(i => ({ id: i.id, title: i.title || '', tags: i.tags || [] }));

  if (issues.length === 0) {
    console.log('No pending issues found.');
    return;
  }
  console.log(`Found ${issues.length} pending issues`);
} else {
  // Parse comma-separated issue IDs, fetch metadata
  const ids = userInput.includes(',')
    ? userInput.split(',').map(s => s.trim())
    : [userInput.trim()];

  for (const id of ids) {
    Bash(`ccw issue init ${id} --title "Issue ${id}" 2>/dev/null || true`);
    const info = Bash(`ccw issue status ${id} --json`).trim();
    const parsed = info ? JSON.parse(info) : {};
    issues.push({ id, title: parsed.title || '', tags: parsed.tags || [] });
  }
}

// Semantic grouping via Gemini CLI (max 6 issues per group)
async function groupBySimilarityGemini(issues) {
  const issueSummaries = issues.map(i => ({
    id: i.id, title: i.title, tags: i.tags
  }));

  const prompt = `
PURPOSE: Group similar issues by semantic similarity for batch processing; maximize within-group coherence; max 6 issues per group
TASK: • Analyze issue titles/tags semantically • Identify functional/architectural clusters • Assign each issue to one group
MODE: analysis
CONTEXT: Issue metadata only
EXPECTED: JSON with groups array, each containing max 6 issue_ids, theme, rationale
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Each issue in exactly one group | Max 6 issues per group | Balance group sizes

INPUT:
${JSON.stringify(issueSummaries, null, 2)}

OUTPUT FORMAT:
{"groups":[{"group_id":1,"theme":"...","issue_ids":["..."],"rationale":"..."}],"ungrouped":[]}
`;

  const taskId = Bash({
    command: `ccw cli -p "${prompt}" --tool gemini --mode analysis`,
    run_in_background: true, timeout: 600000
  });
  const output = TaskOutput({ task_id: taskId, block: true });

  // Extract JSON from potential markdown code blocks
  function extractJsonFromMarkdown(text) {
    const jsonMatch = text.match(/```json\s*\n([\s\S]*?)\n```/) ||
                      text.match(/```\s*\n([\s\S]*?)\n```/);
    return jsonMatch ? jsonMatch[1] : text;
  }

  const result = JSON.parse(extractJsonFromMarkdown(output));
  return result.groups.map(g => g.issue_ids.map(id => issues.find(i => i.id === id)));
}

const batches = await groupBySimilarityGemini(issues);
console.log(`Processing ${issues.length} issues in ${batches.length} batch(es) (Gemini semantic grouping, max 6 issues/agent)`);

TodoWrite({
  todos: batches.map((_, i) => ({
    content: `Plan batch ${i+1}`,
    status: 'pending',
    activeForm: `Planning batch ${i+1}`
  }))
});

Phase 2: Unified Explore + Plan (issue-plan-agent) - PARALLEL

Bash(`mkdir -p .workflow/issues/solutions`);
const pendingSelections = [];  // Collect multi-solution issues for user selection
const agentResults = [];       // Collect all agent results for conflict aggregation

// Build prompts for all batches
const agentTasks = batches.map((batch, batchIndex) => {
  const issueList = batch.map(i => `- ${i.id}: ${i.title}${i.tags.length ? ` [${i.tags.join(', ')}]` : ''}`).join('\n');
  const batchIds = batch.map(i => i.id);

  const issuePrompt = `
## Plan Issues

**Issues** (grouped by similarity):
${issueList}

**Project Root**: ${process.cwd()}

### Project Context (MANDATORY - Read Both Files First)
1. Read: .workflow/project-tech.json (technology stack, architecture, key components)
2. Read: .workflow/project-guidelines.json (user-defined constraints and conventions)

**CRITICAL**: All solution tasks MUST comply with constraints in project-guidelines.json

### Steps
1. Fetch: \`ccw issue status <id> --json\`
2. Load project context (project-tech.json + project-guidelines.json)
3. **If source=discovery**: Use discovery_context (file, line, snippet, suggested_fix) as planning hints
4. Explore (ACE) → Plan solution (respecting guidelines)
5. Register & bind: \`ccw issue bind <id> --solution <file>\`

### Generate Files
\`.workflow/issues/solutions/{issue-id}.jsonl\` - Solution with tasks (schema: cat .claude/workflows/cli-templates/schemas/solution-schema.json)

### Binding Rules
- **Single solution**: Auto-bind via \`ccw issue bind <id> --solution <file>\`
- **Multiple solutions**: Register only, return for user selection

### Return Summary
\`\`\`json
{
  "bound": [{ "issue_id": "...", "solution_id": "...", "task_count": N }],
  "pending_selection": [{ "issue_id": "...", "solutions": [{ "id": "...", "description": "...", "task_count": N }] }],
  "conflicts": [{ "file": "...", "issues": [...] }]
}
\`\`\`
`;

  return { batchIndex, batchIds, issuePrompt, batch };
});

// Launch agents in parallel (max 10 concurrent)
const MAX_PARALLEL = 10;
for (let i = 0; i < agentTasks.length; i += MAX_PARALLEL) {
  const chunk = agentTasks.slice(i, i + MAX_PARALLEL);
  const taskIds = [];

  // Launch chunk in parallel
  for (const { batchIndex, batchIds, issuePrompt, batch } of chunk) {
    updateTodo(`Plan batch ${batchIndex + 1}`, 'in_progress');
    const taskId = Task(
      subagent_type="issue-plan-agent",
      run_in_background=true,
      description=`Explore & plan ${batch.length} issues: ${batchIds.join(', ')}`,
      prompt=issuePrompt
    );
    taskIds.push({ taskId, batchIndex });
  }

  console.log(`Launched ${taskIds.length} agents (batch ${i/MAX_PARALLEL + 1}/${Math.ceil(agentTasks.length/MAX_PARALLEL)})...`);

  // Collect results from this chunk
  for (const { taskId, batchIndex } of taskIds) {
    const result = TaskOutput(task_id=taskId, block=true);
    const summary = JSON.parse(result);
    agentResults.push(summary);  // Store for Phase 3 conflict aggregation

    for (const item of summary.bound || []) {
      console.log(`✓ ${item.issue_id}: ${item.solution_id} (${item.task_count} tasks)`);
    }
    // Collect and notify pending selections
    for (const pending of summary.pending_selection || []) {
      console.log(`⏳ ${pending.issue_id}: ${pending.solutions.length} solutions → awaiting selection`);
      pendingSelections.push(pending);
    }
    if (summary.conflicts?.length > 0) {
      console.log(`⚠ Conflicts: ${summary.conflicts.length} detected (will resolve in Phase 3)`);
    }
    updateTodo(`Plan batch ${batchIndex + 1}`, 'completed');
  }
}

Phase 3: Conflict Resolution & Solution Selection

// Phase 3a: Aggregate and resolve conflicts from all agents
const allConflicts = [];
for (const result of agentResults) {
  if (result.conflicts?.length > 0) {
    allConflicts.push(...result.conflicts);
  }
}

if (allConflicts.length > 0) {
  console.log(`\n## Resolving ${allConflicts.length} conflict(s) detected by agents\n`);

  // ALWAYS confirm high-severity conflicts (per user preference)
  const highSeverity = allConflicts.filter(c => c.severity === 'high');
  const lowMedium = allConflicts.filter(c => c.severity !== 'high');

  // Auto-resolve low/medium severity
  for (const conflict of lowMedium) {
    console.log(`  Auto-resolved: ${conflict.summary}${conflict.recommended_resolution}`);
  }

  // ALWAYS require user confirmation for high severity
  if (highSeverity.length > 0) {
    const conflictAnswer = AskUserQuestion({
      questions: highSeverity.slice(0, 4).map(conflict => ({
        question: `${conflict.type}: ${conflict.summary}. How to resolve?`,
        header: conflict.type.replace('_conflict', ''),
        multiSelect: false,
        options: conflict.resolution_options.map(opt => ({
          label: opt.strategy,
          description: opt.rationale
        }))
      }))
    });
    // Apply user-selected resolutions
    console.log('Applied user-selected conflict resolutions');
  }
}

// Phase 3b: Multi-Solution Selection (MANDATORY when pendingSelections > 0)
if (pendingSelections.length > 0) {
  console.log(`\n## User Selection Required: ${pendingSelections.length} issue(s) have multiple solutions\n`);

  const answer = AskUserQuestion({
    questions: pendingSelections.map(({ issue_id, solutions }) => ({
      question: `Select solution for ${issue_id}:`,
      header: issue_id,
      multiSelect: false,
      options: solutions.map(s => ({
        label: `${s.id} (${s.task_count} tasks)`,
        description: s.description
      }))
    }))
  });

  // Bind user-selected solutions
  for (const { issue_id } of pendingSelections) {
    const selectedId = extractSelectedSolutionId(answer, issue_id);
    if (selectedId) {
      Bash(`ccw issue bind ${issue_id} ${selectedId}`);
      console.log(`✓ ${issue_id}: ${selectedId} bound`);
    }
  }
}

Phase 4: Summary

// Count planned issues via CLI
const plannedIds = Bash(`ccw issue list --status planned --ids`).trim();
const plannedCount = plannedIds ? plannedIds.split('\n').length : 0;

console.log(`
## Done: ${issues.length} issues → ${plannedCount} planned

Next: \`/issue:queue\` → \`/issue:execute\`
`);

Error Handling

Error Resolution
Issue not found Auto-create in issues.jsonl
ACE search fails Agent falls back to ripgrep
No solutions generated Display error, suggest manual planning
User cancels selection Skip issue, continue with others
File conflicts Agent detects and suggests resolution order
  • /issue:queue - Form execution queue from bound solutions
  • /issue:execute - Execute queue with codex
  • ccw issue list - List all issues
  • ccw issue status - View issue and solution details