mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-10 02:24:35 +08:00
13 KiB
13 KiB
name, description, argument-hint, allowed-tools
| name | description | argument-hint | allowed-tools |
|---|---|---|---|
| plan | Batch plan issue resolution using issue-plan-agent (explore + plan closed-loop) | --all-pending <issue-id>[,<issue-id>,...] [--batch-size 3] | TodoWrite(*), Task(*), SlashCommand(*), AskUserQuestion(*), Bash(*), Read(*), Write(*) |
Issue Plan Command (/issue:plan)
Overview
Unified planning command using issue-plan-agent that combines exploration and planning into a single closed-loop workflow.
Output Requirements
Generate Files:
.workflow/issues/solutions/{issue-id}.jsonl- Solution with tasks for each issue
Return Summary:
{
"bound": [{ "issue_id": "...", "solution_id": "...", "task_count": N }],
"pending_selection": [{ "issue_id": "...", "solutions": [...] }],
"conflicts": [{ "file": "...", "issues": [...] }]
}
Completion Criteria:
- Solution file generated for each issue
- Single solution → auto-bound via
ccw issue bind - Multiple solutions → returned for user selection
- Tasks conform to schema:
cat .claude/workflows/cli-templates/schemas/solution-schema.json - Each task has quantified
acceptance.criteria
Core Capabilities
- Closed-loop agent: issue-plan-agent combines explore + plan
- Batch processing: 1 agent processes 1-3 issues
- ACE semantic search integrated into planning
- Solution with executable tasks and delivery criteria
- Automatic solution registration and binding
Storage Structure (Flat JSONL)
.workflow/issues/
├── issues.jsonl # All issues (one per line)
├── queue.json # Execution queue
└── solutions/
├── {issue-id}.jsonl # Solutions for issue (one per line)
└── ...
Usage
/issue:plan <issue-id>[,<issue-id>,...] [FLAGS]
# Examples
/issue:plan GH-123 # Single issue
/issue:plan GH-123,GH-124,GH-125 # Batch (up to 3)
/issue:plan --all-pending # All pending issues
# Flags
--batch-size <n> Max issues per agent batch (default: 3)
Execution Process
Phase 1: Issue Loading
├─ Parse input (single, comma-separated, or --all-pending)
├─ Fetch issue metadata (ID, title, tags)
├─ Validate issues exist (create if needed)
└─ Group by similarity (shared tags or title keywords, max 3 per batch)
Phase 2: Unified Explore + Plan (issue-plan-agent)
├─ Launch issue-plan-agent per batch
├─ Agent performs:
│ ├─ ACE semantic search for each issue
│ ├─ Codebase exploration (files, patterns, dependencies)
│ ├─ Solution generation with task breakdown
│ └─ Conflict detection across issues
└─ Output: solution JSON per issue
Phase 3: Solution Registration & Binding
├─ Append solutions to solutions/{issue-id}.jsonl
├─ Single solution per issue → auto-bind
├─ Multiple candidates → AskUserQuestion to select
└─ Update issues.jsonl with bound_solution_id
Phase 4: Summary
├─ Display bound solutions
├─ Show task counts per issue
└─ Display next steps (/issue:queue)
Implementation
Phase 1: Issue Loading (ID + Title + Tags)
const batchSize = flags.batchSize || 3;
let issues = []; // {id, title, tags}
if (flags.allPending) {
// Get pending issues with metadata via CLI (JSON output)
const result = Bash(`ccw issue list --status pending,registered --json`).trim();
const parsed = result ? JSON.parse(result) : [];
issues = parsed.map(i => ({ id: i.id, title: i.title || '', tags: i.tags || [] }));
if (issues.length === 0) {
console.log('No pending issues found.');
return;
}
console.log(`Found ${issues.length} pending issues`);
} else {
// Parse comma-separated issue IDs, fetch metadata
const ids = userInput.includes(',')
? userInput.split(',').map(s => s.trim())
: [userInput.trim()];
for (const id of ids) {
Bash(`ccw issue init ${id} --title "Issue ${id}" 2>/dev/null || true`);
const info = Bash(`ccw issue status ${id} --json`).trim();
const parsed = info ? JSON.parse(info) : {};
issues.push({ id, title: parsed.title || '', tags: parsed.tags || [] });
}
}
// Semantic grouping via Gemini CLI (max 6 issues per group)
async function groupBySimilarityGemini(issues) {
const issueSummaries = issues.map(i => ({
id: i.id, title: i.title, tags: i.tags
}));
const prompt = `
PURPOSE: Group similar issues by semantic similarity for batch processing; maximize within-group coherence; max 6 issues per group
TASK: • Analyze issue titles/tags semantically • Identify functional/architectural clusters • Assign each issue to one group
MODE: analysis
CONTEXT: Issue metadata only
EXPECTED: JSON with groups array, each containing max 6 issue_ids, theme, rationale
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Each issue in exactly one group | Max 6 issues per group | Balance group sizes
INPUT:
${JSON.stringify(issueSummaries, null, 2)}
OUTPUT FORMAT:
{"groups":[{"group_id":1,"theme":"...","issue_ids":["..."],"rationale":"..."}],"ungrouped":[]}
`;
const taskId = Bash({
command: `ccw cli -p "${prompt}" --tool gemini --mode analysis`,
run_in_background: true, timeout: 600000
});
const output = TaskOutput({ task_id: taskId, block: true });
// Extract JSON from potential markdown code blocks
function extractJsonFromMarkdown(text) {
const jsonMatch = text.match(/```json\s*\n([\s\S]*?)\n```/) ||
text.match(/```\s*\n([\s\S]*?)\n```/);
return jsonMatch ? jsonMatch[1] : text;
}
const result = JSON.parse(extractJsonFromMarkdown(output));
return result.groups.map(g => g.issue_ids.map(id => issues.find(i => i.id === id)));
}
const batches = await groupBySimilarityGemini(issues);
console.log(`Processing ${issues.length} issues in ${batches.length} batch(es) (Gemini semantic grouping, max 6 issues/agent)`);
TodoWrite({
todos: batches.map((_, i) => ({
content: `Plan batch ${i+1}`,
status: 'pending',
activeForm: `Planning batch ${i+1}`
}))
});
Phase 2: Unified Explore + Plan (issue-plan-agent) - PARALLEL
Bash(`mkdir -p .workflow/issues/solutions`);
const pendingSelections = []; // Collect multi-solution issues for user selection
const agentResults = []; // Collect all agent results for conflict aggregation
// Build prompts for all batches
const agentTasks = batches.map((batch, batchIndex) => {
const issueList = batch.map(i => `- ${i.id}: ${i.title}${i.tags.length ? ` [${i.tags.join(', ')}]` : ''}`).join('\n');
const batchIds = batch.map(i => i.id);
const issuePrompt = `
## Plan Issues
**Issues** (grouped by similarity):
${issueList}
**Project Root**: ${process.cwd()}
### Project Context (MANDATORY - Read Both Files First)
1. Read: .workflow/project-tech.json (technology stack, architecture, key components)
2. Read: .workflow/project-guidelines.json (user-defined constraints and conventions)
**CRITICAL**: All solution tasks MUST comply with constraints in project-guidelines.json
### Steps
1. Fetch: \`ccw issue status <id> --json\`
2. Load project context (project-tech.json + project-guidelines.json)
3. **If source=discovery**: Use discovery_context (file, line, snippet, suggested_fix) as planning hints
4. Explore (ACE) → Plan solution (respecting guidelines)
5. Register & bind: \`ccw issue bind <id> --solution <file>\`
### Generate Files
\`.workflow/issues/solutions/{issue-id}.jsonl\` - Solution with tasks (schema: cat .claude/workflows/cli-templates/schemas/solution-schema.json)
### Binding Rules
- **Single solution**: Auto-bind via \`ccw issue bind <id> --solution <file>\`
- **Multiple solutions**: Register only, return for user selection
### Return Summary
\`\`\`json
{
"bound": [{ "issue_id": "...", "solution_id": "...", "task_count": N }],
"pending_selection": [{ "issue_id": "...", "solutions": [{ "id": "...", "description": "...", "task_count": N }] }],
"conflicts": [{ "file": "...", "issues": [...] }]
}
\`\`\`
`;
return { batchIndex, batchIds, issuePrompt, batch };
});
// Launch agents in parallel (max 10 concurrent)
const MAX_PARALLEL = 10;
for (let i = 0; i < agentTasks.length; i += MAX_PARALLEL) {
const chunk = agentTasks.slice(i, i + MAX_PARALLEL);
const taskIds = [];
// Launch chunk in parallel
for (const { batchIndex, batchIds, issuePrompt, batch } of chunk) {
updateTodo(`Plan batch ${batchIndex + 1}`, 'in_progress');
const taskId = Task(
subagent_type="issue-plan-agent",
run_in_background=true,
description=`Explore & plan ${batch.length} issues: ${batchIds.join(', ')}`,
prompt=issuePrompt
);
taskIds.push({ taskId, batchIndex });
}
console.log(`Launched ${taskIds.length} agents (batch ${i/MAX_PARALLEL + 1}/${Math.ceil(agentTasks.length/MAX_PARALLEL)})...`);
// Collect results from this chunk
for (const { taskId, batchIndex } of taskIds) {
const result = TaskOutput(task_id=taskId, block=true);
const summary = JSON.parse(result);
agentResults.push(summary); // Store for Phase 3 conflict aggregation
for (const item of summary.bound || []) {
console.log(`✓ ${item.issue_id}: ${item.solution_id} (${item.task_count} tasks)`);
}
// Collect and notify pending selections
for (const pending of summary.pending_selection || []) {
console.log(`⏳ ${pending.issue_id}: ${pending.solutions.length} solutions → awaiting selection`);
pendingSelections.push(pending);
}
if (summary.conflicts?.length > 0) {
console.log(`⚠ Conflicts: ${summary.conflicts.length} detected (will resolve in Phase 3)`);
}
updateTodo(`Plan batch ${batchIndex + 1}`, 'completed');
}
}
Phase 3: Conflict Resolution & Solution Selection
// Phase 3a: Aggregate and resolve conflicts from all agents
const allConflicts = [];
for (const result of agentResults) {
if (result.conflicts?.length > 0) {
allConflicts.push(...result.conflicts);
}
}
if (allConflicts.length > 0) {
console.log(`\n## Resolving ${allConflicts.length} conflict(s) detected by agents\n`);
// ALWAYS confirm high-severity conflicts (per user preference)
const highSeverity = allConflicts.filter(c => c.severity === 'high');
const lowMedium = allConflicts.filter(c => c.severity !== 'high');
// Auto-resolve low/medium severity
for (const conflict of lowMedium) {
console.log(` Auto-resolved: ${conflict.summary} → ${conflict.recommended_resolution}`);
}
// ALWAYS require user confirmation for high severity
if (highSeverity.length > 0) {
const conflictAnswer = AskUserQuestion({
questions: highSeverity.slice(0, 4).map(conflict => ({
question: `${conflict.type}: ${conflict.summary}. How to resolve?`,
header: conflict.type.replace('_conflict', ''),
multiSelect: false,
options: conflict.resolution_options.map(opt => ({
label: opt.strategy,
description: opt.rationale
}))
}))
});
// Apply user-selected resolutions
console.log('Applied user-selected conflict resolutions');
}
}
// Phase 3b: Multi-Solution Selection (MANDATORY when pendingSelections > 0)
if (pendingSelections.length > 0) {
console.log(`\n## User Selection Required: ${pendingSelections.length} issue(s) have multiple solutions\n`);
const answer = AskUserQuestion({
questions: pendingSelections.map(({ issue_id, solutions }) => ({
question: `Select solution for ${issue_id}:`,
header: issue_id,
multiSelect: false,
options: solutions.map(s => ({
label: `${s.id} (${s.task_count} tasks)`,
description: s.description
}))
}))
});
// Bind user-selected solutions
for (const { issue_id } of pendingSelections) {
const selectedId = extractSelectedSolutionId(answer, issue_id);
if (selectedId) {
Bash(`ccw issue bind ${issue_id} ${selectedId}`);
console.log(`✓ ${issue_id}: ${selectedId} bound`);
}
}
}
Phase 4: Summary
// Count planned issues via CLI
const plannedIds = Bash(`ccw issue list --status planned --ids`).trim();
const plannedCount = plannedIds ? plannedIds.split('\n').length : 0;
console.log(`
## Done: ${issues.length} issues → ${plannedCount} planned
Next: \`/issue:queue\` → \`/issue:execute\`
`);
Error Handling
| Error | Resolution |
|---|---|
| Issue not found | Auto-create in issues.jsonl |
| ACE search fails | Agent falls back to ripgrep |
| No solutions generated | Display error, suggest manual planning |
| User cancels selection | Skip issue, continue with others |
| File conflicts | Agent detects and suggests resolution order |
Related Commands
/issue:queue- Form execution queue from bound solutions/issue:execute- Execute queue with codexccw issue list- List all issuesccw issue status- View issue and solution details