mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-09 02:24:11 +08:00
- Introduced a comprehensive design document for a Code Semantic Graph aimed at enhancing static analysis capabilities. - Defined the architecture, core components, and implementation steps for analyzing function calls, data flow, and dependencies. - Included detailed specifications for nodes and edges in the graph, along with database schema for storage. - Outlined phases for implementation, technical challenges, success metrics, and application scenarios.
30 KiB
30 KiB
Docstring与LLM混合策略设计方案
1. 背景与目标
1.1 当前问题
现有 llm_enhancer.py 的实现存在以下问题:
- 忽略已有文档:对所有代码无差别调用LLM,即使已有高质量的docstring
- 成本浪费:重复生成已有信息,增加API调用费用和时间
- 信息质量不一致:LLM生成的内容可能不如作者编写的docstring准确
- 缺少作者意图:丢失了docstring中的设计决策、使用示例等关键信息
1.2 设计目标
实现智能混合策略,结合docstring和LLM的优势:
- 优先使用docstring:作为最权威的信息源
- LLM作为补充:填补docstring缺失或质量不足的部分
- 智能质量评估:自动判断docstring质量,决定是否需要LLM增强
- 成本优化:减少不必要的LLM调用,降低API费用
- 信息融合:将docstring和LLM生成的内容有机结合
2. 技术架构
2.1 整体流程
Code Symbol
↓
[Docstring Extractor] ← 提取docstring
↓
[Quality Evaluator] ← 评估docstring质量
↓
├─ High Quality → Use Docstring Directly
│ + LLM Generate Keywords Only
│
├─ Medium Quality → LLM Refine & Enhance
│ (docstring作为base)
│
└─ Low/No Docstring → LLM Full Generation
(现有流程)
↓
[Metadata Merger] ← 合并docstring和LLM内容
↓
Final SemanticMetadata
2.2 核心组件
from dataclasses import dataclass
from enum import Enum
from typing import Optional
class DocstringQuality(Enum):
"""Docstring质量等级"""
MISSING = "missing" # 无docstring
LOW = "low" # 质量低:<10字符或纯占位符
MEDIUM = "medium" # 质量中:有基本描述但不完整
HIGH = "high" # 质量高:详细且结构化
@dataclass
class DocstringMetadata:
"""从docstring提取的元数据"""
raw_text: str
quality: DocstringQuality
summary: Optional[str] = None # 提取的摘要
parameters: Optional[dict] = None # 参数说明
returns: Optional[str] = None # 返回值说明
examples: Optional[str] = None # 使用示例
notes: Optional[str] = None # 注意事项
3. 详细实现步骤
3.1 Docstring提取与解析
import re
from typing import Optional
class DocstringExtractor:
"""Docstring提取器"""
# Docstring风格正则
GOOGLE_STYLE_PATTERN = re.compile(
r'Args:|Returns:|Raises:|Examples:|Note:',
re.MULTILINE
)
NUMPY_STYLE_PATTERN = re.compile(
r'Parameters\n-+|Returns\n-+|Examples\n-+',
re.MULTILINE
)
def extract_from_code(self, content: str, symbol: Symbol) -> Optional[str]:
"""从代码中提取docstring"""
lines = content.splitlines()
start_line = symbol.range[0] - 1 # 0-indexed
# 查找函数定义后的第一个字符串字面量
# 通常在函数定义的下一行或几行内
for i in range(start_line + 1, min(start_line + 10, len(lines))):
line = lines[i].strip()
# Python triple-quoted string
if line.startswith('"""') or line.startswith("'''"):
return self._extract_multiline_docstring(lines, i)
return None
def _extract_multiline_docstring(
self,
lines: List[str],
start_idx: int
) -> str:
"""提取多行docstring"""
quote_char = '"""' if lines[start_idx].strip().startswith('"""') else "'''"
docstring_lines = []
# 检查是否单行docstring
first_line = lines[start_idx].strip()
if first_line.count(quote_char) == 2:
# 单行: """This is a docstring."""
return first_line.strip(quote_char).strip()
# 多行docstring
in_docstring = True
for i in range(start_idx, len(lines)):
line = lines[i]
if i == start_idx:
# 第一行:移除开始的引号
docstring_lines.append(line.strip().lstrip(quote_char))
elif quote_char in line:
# 结束行:移除结束的引号
docstring_lines.append(line.strip().rstrip(quote_char))
break
else:
docstring_lines.append(line.strip())
return '\n'.join(docstring_lines).strip()
def parse_docstring(self, raw_docstring: str) -> DocstringMetadata:
"""解析docstring,提取结构化信息"""
if not raw_docstring:
return DocstringMetadata(
raw_text="",
quality=DocstringQuality.MISSING
)
# 评估质量
quality = self._evaluate_quality(raw_docstring)
# 提取各个部分
metadata = DocstringMetadata(
raw_text=raw_docstring,
quality=quality,
)
# 提取摘要(第一行或第一段)
metadata.summary = self._extract_summary(raw_docstring)
# 如果是Google或NumPy风格,提取结构化内容
if self.GOOGLE_STYLE_PATTERN.search(raw_docstring):
self._parse_google_style(raw_docstring, metadata)
elif self.NUMPY_STYLE_PATTERN.search(raw_docstring):
self._parse_numpy_style(raw_docstring, metadata)
return metadata
def _evaluate_quality(self, docstring: str) -> DocstringQuality:
"""评估docstring质量"""
if not docstring or len(docstring.strip()) == 0:
return DocstringQuality.MISSING
# 检查是否是占位符
placeholders = ['todo', 'fixme', 'tbd', 'placeholder', '...']
if any(p in docstring.lower() for p in placeholders):
return DocstringQuality.LOW
# 长度检查
if len(docstring.strip()) < 10:
return DocstringQuality.LOW
# 检查是否有结构化内容
has_structure = (
self.GOOGLE_STYLE_PATTERN.search(docstring) or
self.NUMPY_STYLE_PATTERN.search(docstring)
)
# 检查是否有足够的描述性文本
word_count = len(docstring.split())
if has_structure and word_count >= 20:
return DocstringQuality.HIGH
elif word_count >= 10:
return DocstringQuality.MEDIUM
else:
return DocstringQuality.LOW
def _extract_summary(self, docstring: str) -> str:
"""提取摘要(第一行或第一段)"""
lines = docstring.split('\n')
# 第一行非空行作为摘要
for line in lines:
if line.strip():
return line.strip()
return ""
def _parse_google_style(self, docstring: str, metadata: DocstringMetadata):
"""解析Google风格docstring"""
# 提取Args
args_match = re.search(r'Args:(.*?)(?=Returns:|Raises:|Examples:|Note:|\Z)', docstring, re.DOTALL)
if args_match:
metadata.parameters = self._parse_args_section(args_match.group(1))
# 提取Returns
returns_match = re.search(r'Returns:(.*?)(?=Raises:|Examples:|Note:|\Z)', docstring, re.DOTALL)
if returns_match:
metadata.returns = returns_match.group(1).strip()
# 提取Examples
examples_match = re.search(r'Examples:(.*?)(?=Note:|\Z)', docstring, re.DOTALL)
if examples_match:
metadata.examples = examples_match.group(1).strip()
def _parse_args_section(self, args_text: str) -> dict:
"""解析参数列表"""
params = {}
# 匹配 "param_name (type): description" 或 "param_name: description"
pattern = re.compile(r'(\w+)\s*(?:\(([^)]+)\))?\s*:\s*(.+)')
for line in args_text.split('\n'):
match = pattern.search(line.strip())
if match:
param_name, param_type, description = match.groups()
params[param_name] = {
'type': param_type,
'description': description.strip()
}
return params
3.2 智能混合策略引擎
class HybridEnhancer:
"""Docstring与LLM混合增强器"""
def __init__(
self,
llm_enhancer: LLMEnhancer,
docstring_extractor: DocstringExtractor
):
self.llm_enhancer = llm_enhancer
self.docstring_extractor = docstring_extractor
def enhance_with_strategy(
self,
file_data: FileData,
symbols: List[Symbol]
) -> Dict[str, SemanticMetadata]:
"""根据docstring质量选择增强策略"""
results = {}
for symbol in symbols:
# 1. 提取并解析docstring
raw_docstring = self.docstring_extractor.extract_from_code(
file_data.content, symbol
)
doc_metadata = self.docstring_extractor.parse_docstring(raw_docstring or "")
# 2. 根据质量选择策略
semantic_metadata = self._apply_strategy(
file_data, symbol, doc_metadata
)
results[symbol.name] = semantic_metadata
return results
def _apply_strategy(
self,
file_data: FileData,
symbol: Symbol,
doc_metadata: DocstringMetadata
) -> SemanticMetadata:
"""应用混合策略"""
quality = doc_metadata.quality
if quality == DocstringQuality.HIGH:
# 高质量:直接使用docstring,只用LLM生成keywords
return self._use_docstring_with_llm_keywords(symbol, doc_metadata)
elif quality == DocstringQuality.MEDIUM:
# 中等质量:让LLM精炼和增强
return self._refine_with_llm(file_data, symbol, doc_metadata)
else: # LOW or MISSING
# 低质量或无:完全由LLM生成
return self._full_llm_generation(file_data, symbol)
def _use_docstring_with_llm_keywords(
self,
symbol: Symbol,
doc_metadata: DocstringMetadata
) -> SemanticMetadata:
"""策略1:使用docstring,LLM只生成keywords"""
# 直接使用docstring的摘要
summary = doc_metadata.summary or doc_metadata.raw_text[:200]
# 使用LLM生成keywords
keywords = self._generate_keywords_only(summary, symbol.name)
# 从docstring推断purpose
purpose = self._infer_purpose_from_docstring(doc_metadata)
return SemanticMetadata(
summary=summary,
keywords=keywords,
purpose=purpose,
file_path=symbol.file_path if hasattr(symbol, 'file_path') else None,
symbol_name=symbol.name,
llm_tool="hybrid_docstring_primary",
)
def _refine_with_llm(
self,
file_data: FileData,
symbol: Symbol,
doc_metadata: DocstringMetadata
) -> SemanticMetadata:
"""策略2:让LLM精炼和增强docstring"""
prompt = f"""
PURPOSE: Refine and enhance an existing docstring for better semantic search
TASK:
- Review the existing docstring
- Generate a concise summary (1-2 sentences) that captures the core purpose
- Extract 8-12 relevant keywords for search
- Identify the functional category/purpose
EXISTING DOCSTRING:
{doc_metadata.raw_text}
CODE CONTEXT:
Function: {symbol.name}
```{file_data.language}
{self._get_symbol_code(file_data.content, symbol)}
OUTPUT: JSON format {{ "summary": "refined summary based on docstring and code", "keywords": ["keyword1", "keyword2", ...], "purpose": "category" }} """
response = self.llm_enhancer._invoke_ccw_cli(prompt, tool='gemini')
if response['success']:
data = json.loads(self.llm_enhancer._extract_json(response['stdout']))
return SemanticMetadata(
summary=data.get('summary', doc_metadata.summary),
keywords=data.get('keywords', []),
purpose=data.get('purpose', 'unknown'),
file_path=file_data.path,
symbol_name=symbol.name,
llm_tool="hybrid_llm_refined",
)
# Fallback: 使用docstring
return self._use_docstring_with_llm_keywords(symbol, doc_metadata)
def _full_llm_generation(
self,
file_data: FileData,
symbol: Symbol
) -> SemanticMetadata:
"""策略3:完全由LLM生成(原有流程)"""
# 复用现有的LLM enhancer
code_snippet = self._get_symbol_code(file_data.content, symbol)
results = self.llm_enhancer.enhance_files([
FileData(
path=f"{file_data.path}:{symbol.name}",
content=code_snippet,
language=file_data.language
)
])
return results.get(f"{file_data.path}:{symbol.name}", SemanticMetadata(
summary="",
keywords=[],
purpose="unknown",
file_path=file_data.path,
symbol_name=symbol.name,
llm_tool="hybrid_llm_full",
))
def _generate_keywords_only(self, summary: str, symbol_name: str) -> List[str]:
"""仅生成keywords(快速LLM调用)"""
prompt = f"""
PURPOSE: Generate search keywords for a code function TASK: Extract 5-8 relevant keywords from the summary
Summary: {summary} Function Name: {symbol_name}
OUTPUT: Comma-separated keywords """
response = self.llm_enhancer._invoke_ccw_cli(prompt, tool='gemini')
if response['success']:
keywords_str = response['stdout'].strip()
return [k.strip() for k in keywords_str.split(',')]
# Fallback: 从摘要提取关键词
return self._extract_keywords_heuristic(summary)
def _extract_keywords_heuristic(self, text: str) -> List[str]:
"""启发式关键词提取(无需LLM)"""
# 简单实现:提取名词性词组
import re
words = re.findall(r'\b[a-z]{4,}\b', text.lower())
# 过滤常见词
stopwords = {'this', 'that', 'with', 'from', 'have', 'will', 'your', 'their'}
keywords = [w for w in words if w not in stopwords]
return list(set(keywords))[:8]
def _infer_purpose_from_docstring(self, doc_metadata: DocstringMetadata) -> str:
"""从docstring推断purpose(无需LLM)"""
summary = doc_metadata.summary.lower()
# 简单规则匹配
if 'authenticate' in summary or 'login' in summary:
return 'auth'
elif 'validate' in summary or 'check' in summary:
return 'validation'
elif 'parse' in summary or 'format' in summary:
return 'data_processing'
elif 'api' in summary or 'endpoint' in summary:
return 'api'
elif 'database' in summary or 'query' in summary:
return 'data'
elif 'test' in summary:
return 'test'
return 'util'
def _get_symbol_code(self, content: str, symbol: Symbol) -> str:
"""提取符号的代码"""
lines = content.splitlines()
start, end = symbol.range
return '\n'.join(lines[start-1:end])
### 3.3 成本优化统计
```python
@dataclass
class EnhancementStats:
"""增强统计"""
total_symbols: int = 0
used_docstring_only: int = 0 # 只使用docstring
llm_keywords_only: int = 0 # LLM只生成keywords
llm_refined: int = 0 # LLM精炼docstring
llm_full_generation: int = 0 # LLM完全生成
total_llm_calls: int = 0
estimated_cost_savings: float = 0.0 # 相比全用LLM节省的成本
class CostOptimizedEnhancer(HybridEnhancer):
"""带成本统计的增强器"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.stats = EnhancementStats()
def enhance_with_strategy(
self,
file_data: FileData,
symbols: List[Symbol]
) -> Dict[str, SemanticMetadata]:
"""增强并统计成本"""
self.stats.total_symbols += len(symbols)
results = super().enhance_with_strategy(file_data, symbols)
# 统计各策略使用情况
for metadata in results.values():
if metadata.llm_tool == "hybrid_docstring_primary":
self.stats.used_docstring_only += 1
self.stats.llm_keywords_only += 1
self.stats.total_llm_calls += 1
elif metadata.llm_tool == "hybrid_llm_refined":
self.stats.llm_refined += 1
self.stats.total_llm_calls += 1
elif metadata.llm_tool == "hybrid_llm_full":
self.stats.llm_full_generation += 1
self.stats.total_llm_calls += 1
# 计算成本节省(假设:keywords-only调用成本为full的20%)
keywords_only_savings = self.stats.llm_keywords_only * 0.8 # 节省80%
full_generation_count = self.stats.total_symbols - self.stats.llm_keywords_only
self.stats.estimated_cost_savings = keywords_only_savings / full_generation_count if full_generation_count > 0 else 0
return results
def print_stats(self):
"""打印统计信息"""
print("=== Enhancement Statistics ===")
print(f"Total Symbols: {self.stats.total_symbols}")
print(f"Used Docstring (with LLM keywords): {self.stats.used_docstring_only} ({self.stats.used_docstring_only/self.stats.total_symbols*100:.1f}%)")
print(f"LLM Refined Docstring: {self.stats.llm_refined} ({self.stats.llm_refined/self.stats.total_symbols*100:.1f}%)")
print(f"LLM Full Generation: {self.stats.llm_full_generation} ({self.stats.llm_full_generation/self.stats.total_symbols*100:.1f}%)")
print(f"Total LLM Calls: {self.stats.total_llm_calls}")
print(f"Estimated Cost Savings: {self.stats.estimated_cost_savings*100:.1f}%")
4. 配置选项
@dataclass
class HybridEnhancementConfig:
"""混合增强配置"""
# 是否启用混合策略(False则回退到全LLM模式)
enable_hybrid: bool = True
# 质量阈值配置
use_docstring_threshold: DocstringQuality = DocstringQuality.HIGH
refine_docstring_threshold: DocstringQuality = DocstringQuality.MEDIUM
# 是否为高质量docstring生成keywords
generate_keywords_for_docstring: bool = True
# LLM配置
llm_tool: str = "gemini"
llm_timeout: int = 300000
# 成本优化
batch_size: int = 5 # 批量处理大小
skip_test_files: bool = True # 跳过测试文件(通常docstring较少)
# 调试选项
log_strategy_decisions: bool = False # 记录策略决策日志
5. 测试策略
5.1 单元测试
import pytest
class TestDocstringExtractor:
"""测试docstring提取"""
def test_extract_google_style(self):
"""测试Google风格docstring提取"""
code = '''
def calculate_total(items, discount=0):
"""Calculate total price with optional discount.
This function processes a list of items and applies
a discount if specified.
Args:
items (list): List of item objects with price attribute.
discount (float): Discount percentage (0-1). Defaults to 0.
Returns:
float: Total price after discount.
Examples:
>>> calculate_total([item1, item2], discount=0.1)
90.0
"""
total = sum(item.price for item in items)
return total * (1 - discount)
'''
extractor = DocstringExtractor()
symbol = Symbol(name='calculate_total', kind='function', range=(1, 18))
docstring = extractor.extract_from_code(code, symbol)
assert docstring is not None
metadata = extractor.parse_docstring(docstring)
assert metadata.quality == DocstringQuality.HIGH
assert 'Calculate total price' in metadata.summary
assert metadata.parameters is not None
assert 'items' in metadata.parameters
assert metadata.returns is not None
assert metadata.examples is not None
def test_extract_low_quality_docstring(self):
"""测试低质量docstring识别"""
code = '''
def process():
"""TODO"""
pass
'''
extractor = DocstringExtractor()
symbol = Symbol(name='process', kind='function', range=(1, 3))
docstring = extractor.extract_from_code(code, symbol)
metadata = extractor.parse_docstring(docstring)
assert metadata.quality == DocstringQuality.LOW
class TestHybridEnhancer:
"""测试混合增强器"""
def test_high_quality_docstring_strategy(self):
"""测试高质量docstring使用策略"""
extractor = DocstringExtractor()
llm_enhancer = LLMEnhancer(LLMConfig(enabled=True))
hybrid = HybridEnhancer(llm_enhancer, extractor)
# 模拟高质量docstring
doc_metadata = DocstringMetadata(
raw_text="Validate user credentials against database.",
quality=DocstringQuality.HIGH,
summary="Validate user credentials against database."
)
symbol = Symbol(name='validate_user', kind='function', range=(1, 10))
result = hybrid._use_docstring_with_llm_keywords(symbol, doc_metadata)
# 应该使用docstring的摘要
assert result.summary == doc_metadata.summary
# 应该有keywords(可能由LLM或启发式生成)
assert len(result.keywords) > 0
def test_cost_optimization(self):
"""测试成本优化效果"""
enhancer = CostOptimizedEnhancer(
llm_enhancer=LLMEnhancer(LLMConfig(enabled=False)), # Mock
docstring_extractor=DocstringExtractor()
)
# 模拟处理10个symbol,其中5个有高质量docstring
# 预期:5个只调用keywords生成,5个完整LLM
# 总调用10次,但成本降低(keywords调用更便宜)
# 实际测试需要mock LLM调用
pass
5.2 集成测试
class TestHybridEnhancementPipeline:
"""测试完整的混合增强流程"""
def test_full_pipeline(self):
"""测试完整流程:代码 -> docstring提取 -> 质量评估 -> 策略选择 -> 增强"""
code = '''
def authenticate_user(username, password):
"""Authenticate user with username and password.
Args:
username (str): User's username
password (str): User's password
Returns:
bool: True if authenticated, False otherwise
"""
# ... implementation
pass
def helper_func(x):
# No docstring
return x * 2
'''
file_data = FileData(path='auth.py', content=code, language='python')
symbols = [
Symbol(name='authenticate_user', kind='function', range=(1, 11)),
Symbol(name='helper_func', kind='function', range=(13, 15)),
]
extractor = DocstringExtractor()
llm_enhancer = LLMEnhancer(LLMConfig(enabled=True))
hybrid = CostOptimizedEnhancer(llm_enhancer, extractor)
results = hybrid.enhance_with_strategy(file_data, symbols)
# authenticate_user 应该使用docstring
assert results['authenticate_user'].llm_tool == "hybrid_docstring_primary"
# helper_func 应该完全LLM生成
assert results['helper_func'].llm_tool == "hybrid_llm_full"
# 统计
assert hybrid.stats.total_symbols == 2
assert hybrid.stats.used_docstring_only >= 1
assert hybrid.stats.llm_full_generation >= 1
6. 实施路线图
Phase 1: 基础设施(1周)
- 设计数据结构(DocstringMetadata, DocstringQuality)
- 实现DocstringExtractor(提取和解析)
- 支持Python docstring(Google/NumPy/reStructuredText风格)
- 单元测试
Phase 2: 质量评估(1周)
- 实现质量评估算法
- 启发式规则优化
- 测试不同质量的docstring
- 调整阈值参数
Phase 3: 混合策略(1-2周)
- 实现HybridEnhancer
- 三种策略实现(docstring-only, refine, full-llm)
- 策略选择逻辑
- 集成测试
Phase 4: 成本优化(1周)
- 实现CostOptimizedEnhancer
- 统计和监控
- 批量处理优化
- 性能测试
Phase 5: 多语言支持(1-2周)
- JavaScript/TypeScript JSDoc
- Java Javadoc
- 其他语言docstring格式
Phase 6: 集成与部署(1周)
- 集成到现有llm_enhancer
- CLI选项暴露
- 配置文件支持
- 文档和示例
总计预估时间:6-8周
7. 性能与成本分析
7.1 预期成本节省
假设场景:分析1000个函数
| Docstring质量分布 | 占比 | LLM调用策略 | 相对成本 |
|---|---|---|---|
| High (有详细docstring) | 30% | 只生成keywords | 20% |
| Medium (有基本docstring) | 40% | 精炼增强 | 60% |
| Low/Missing | 30% | 完全生成 | 100% |
总成本计算:
- 纯LLM模式:1000 * 100% = 1000 units
- 混合模式:30020% + 40060% + 300*100% = 60 + 240 + 300 = 600 units
- 节省:40%
7.2 质量对比
| 指标 | 纯LLM模式 | 混合模式 |
|---|---|---|
| 准确性 | 中(可能有幻觉) | 高(docstring权威) |
| 一致性 | 中(依赖prompt) | 高(保留作者风格) |
| 覆盖率 | 高(全覆盖) | 高(98%+) |
| 成本 | 高 | 低(节省40%) |
| 速度 | 慢(所有文件) | 快(减少LLM调用) |
8. 潜在问题与解决方案
8.1 问题:Docstring过时
现象:代码已修改,但docstring未更新,导致信息不准确。
解决方案:
class DocstringFreshnessChecker:
"""检查docstring与代码的一致性"""
def check_freshness(
self,
symbol: Symbol,
code: str,
doc_metadata: DocstringMetadata
) -> bool:
"""检查docstring是否与代码匹配"""
# 检查1: 参数列表是否匹配
if doc_metadata.parameters:
actual_params = self._extract_actual_parameters(code)
documented_params = set(doc_metadata.parameters.keys())
if actual_params != documented_params:
logger.warning(
f"Parameter mismatch in {symbol.name}: "
f"code has {actual_params}, doc has {documented_params}"
)
return False
# 检查2: 使用LLM验证一致性
# TODO: 构建验证prompt
return True
8.2 问题:不同docstring风格混用
现象:同一项目中使用多种docstring风格(Google, NumPy, 自定义)。
解决方案:
class MultiStyleDocstringParser:
"""支持多种docstring风格的解析器"""
def parse(self, docstring: str) -> DocstringMetadata:
"""自动检测并解析不同风格"""
# 尝试各种解析器
for parser in [
GoogleStyleParser(),
NumpyStyleParser(),
ReStructuredTextParser(),
SimpleParser(), # Fallback
]:
try:
metadata = parser.parse(docstring)
if metadata.quality != DocstringQuality.LOW:
return metadata
except Exception:
continue
# 如果所有解析器都失败,返回简单解析结果
return SimpleParser().parse(docstring)
8.3 问题:多语言docstring提取差异
现象:不同语言的docstring格式和位置不同。
解决方案:
class LanguageSpecificExtractor:
"""语言特定的docstring提取器"""
def extract(self, language: str, code: str, symbol: Symbol) -> Optional[str]:
"""根据语言选择合适的提取器"""
extractors = {
'python': PythonDocstringExtractor(),
'javascript': JSDocExtractor(),
'typescript': TSDocExtractor(),
'java': JavadocExtractor(),
}
extractor = extractors.get(language, GenericExtractor())
return extractor.extract(code, symbol)
class JSDocExtractor:
"""JavaScript/TypeScript JSDoc提取器"""
def extract(self, code: str, symbol: Symbol) -> Optional[str]:
"""提取JSDoc注释"""
lines = code.splitlines()
start_line = symbol.range[0] - 1
# 向上查找 /** ... */ 注释
for i in range(start_line - 1, max(0, start_line - 20), -1):
if '*/' in lines[i]:
# 找到结束标记,向上提取
return self._extract_jsdoc_block(lines, i)
return None
9. 配置示例
9.1 配置文件
# .codexlens/hybrid_enhancement.yaml
hybrid_enhancement:
enabled: true
# 质量阈值
quality_thresholds:
use_docstring: high # high/medium/low
refine_docstring: medium
# LLM选项
llm:
tool: gemini
fallback: qwen
timeout_ms: 300000
batch_size: 5
# 成本优化
cost_optimization:
generate_keywords_for_docstring: true
skip_test_files: true
skip_private_methods: false
# 语言支持
languages:
python:
styles: [google, numpy, sphinx]
javascript:
styles: [jsdoc]
java:
styles: [javadoc]
# 监控
logging:
log_strategy_decisions: false
log_cost_savings: true
9.2 CLI使用
# 使用混合策略增强
codex-lens enhance . --hybrid --tool gemini
# 查看成本统计
codex-lens enhance . --hybrid --show-stats
# 仅对高质量docstring生成keywords
codex-lens enhance . --hybrid --keywords-only
# 禁用混合模式,回退到纯LLM
codex-lens enhance . --no-hybrid --tool gemini
10. 成功指标
- 成本节省:相比纯LLM模式,降低API调用成本40%+
- 准确性提升:使用docstring的符号,元数据准确率>95%
- 覆盖率:98%+的符号有语义元数据(docstring或LLM生成)
- 速度提升:整体处理速度提升30%+(减少LLM调用)
- 用户满意度:保留docstring信息,开发者认可度高