mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-06 01:54:11 +08:00
- Create ccw-litellm Python package with AbstractEmbedder and AbstractLLMClient interfaces - Add BaseEmbedder abstraction and factory pattern to codex-lens for pluggable backends - Implement API Settings dashboard page for provider credentials and custom endpoints - Add REST API routes for CRUD operations on providers and endpoints - Extend CLI with --model parameter for custom endpoint routing - Integrate existing context-cache for @pattern file resolution - Add provider model registry with predefined models per provider type - Include i18n translations (en/zh) for all new UI elements 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
65 lines
1.7 KiB
Python
65 lines
1.7 KiB
Python
from __future__ import annotations
|
|
|
|
import asyncio
|
|
from typing import Any, Sequence
|
|
|
|
import numpy as np
|
|
|
|
from ccw_litellm.interfaces import AbstractEmbedder, AbstractLLMClient, ChatMessage, LLMResponse
|
|
|
|
|
|
class _DummyEmbedder(AbstractEmbedder):
|
|
@property
|
|
def dimensions(self) -> int:
|
|
return 3
|
|
|
|
def embed(
|
|
self,
|
|
texts: str | Sequence[str],
|
|
*,
|
|
batch_size: int | None = None,
|
|
**kwargs: Any,
|
|
) -> np.ndarray:
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
_ = batch_size
|
|
_ = kwargs
|
|
return np.zeros((len(texts), self.dimensions), dtype=np.float32)
|
|
|
|
|
|
class _DummyLLM(AbstractLLMClient):
|
|
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> LLMResponse:
|
|
_ = kwargs
|
|
return LLMResponse(content="".join(m.content for m in messages))
|
|
|
|
def complete(self, prompt: str, **kwargs: Any) -> LLMResponse:
|
|
_ = kwargs
|
|
return LLMResponse(content=prompt)
|
|
|
|
|
|
def test_embed_sync_shape_and_dtype() -> None:
|
|
emb = _DummyEmbedder()
|
|
out = emb.embed(["a", "b"])
|
|
assert out.shape == (2, 3)
|
|
assert out.dtype == np.float32
|
|
|
|
|
|
def test_embed_async_wrapper() -> None:
|
|
emb = _DummyEmbedder()
|
|
out = asyncio.run(emb.aembed("x"))
|
|
assert out.shape == (1, 3)
|
|
|
|
|
|
def test_llm_sync() -> None:
|
|
llm = _DummyLLM()
|
|
out = llm.chat([ChatMessage(role="user", content="hi")])
|
|
assert out == LLMResponse(content="hi")
|
|
|
|
|
|
def test_llm_async_wrappers() -> None:
|
|
llm = _DummyLLM()
|
|
out1 = asyncio.run(llm.achat([ChatMessage(role="user", content="a")]))
|
|
out2 = asyncio.run(llm.acomplete("b"))
|
|
assert out1.content == "a"
|
|
assert out2.content == "b"
|