Compare commits

..

20 Commits
v4.0 ... v4.3

Author SHA1 Message Date
cexll
10070a9bef update skills plugin 2025-11-19 16:14:33 +08:00
cexll
b18439f268 update gemini 2025-11-19 16:14:22 +08:00
cexll
4230479ff4 fix codex skills running 2025-11-19 14:54:45 +08:00
cexll
18c26a252a update doc 2025-11-18 21:12:52 +08:00
cexll
f6fc9a338f feat simple dev workflow 2025-11-17 22:14:48 +08:00
cexll
6223d59042 Add Gemini CLI integration skill
Implement gemini skill following codex pattern with Python wrapper supporting multiple execution modes (uv run, python3, direct), configurable models (gemini-2.5-pro/flash/1.5-pro), timeout control, and zero-dependency cross-platform compatibility.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-16 00:04:33 +08:00
cexll
e6b229645a update codex skills 2025-11-15 23:14:35 +08:00
cexll
9dc3e8f43d Merge pull request #21 from Tshoiasc/master
Enhance codex.py to auto-detect long inputs and switch to stdin mode,…
2025-11-14 09:45:24 +08:00
cexll
e9faa0bc2d Merge branch 'master' into master 2025-11-14 09:45:04 +08:00
swe-agent[bot]
70caa8d7fc Change default model to gpt-5.1-codex
- Update SKILL.md documentation
- Update codex.py DEFAULT_MODEL constant

Generated by swe-agent
2025-11-14 01:40:23 +00:00
Tshoiasc
4f74d5afa1 Enhance codex.py to auto-detect long inputs and switch to stdin mode, improving handling of shell argument issues. Updated build_codex_args to support stdin and added relevant logging for task length warnings. 2025-11-14 09:33:34 +08:00
cexll
7f61437eea fix codex.py wsl run err 2025-11-13 15:41:54 +08:00
swe-agent[bot]
ed604f6db7 optimize codex skills 2025-11-11 18:10:11 +08:00
swe-agent[bot]
fb66b52b68 Merge branch 'master' of github.com:cexll/myclaude 2025-11-11 16:47:13 +08:00
swe-agent[bot]
05e32203ee optimize codex skills 2025-11-11 16:47:04 +08:00
cexll
1bf7dd9a83 Rename SKILLS.md to SKILL.md 2025-11-10 19:09:31 +08:00
swe-agent[bot]
19aa237d47 feat codex skills 2025-11-10 19:00:21 +08:00
swe-agent[bot]
5cd1103b85 update enhance-prompt.md response 2025-11-04 16:04:11 +08:00
swe-agent[bot]
e2f80508b5 docs: 新增 /enhance-prompt 命令并更新所有 README 文档 2025-11-04 14:24:55 +08:00
swe-agent[bot]
86cb8f6611 update readme 2025-10-22 16:26:14 +08:00
13 changed files with 1448 additions and 2 deletions

View File

@@ -175,6 +175,57 @@
"skills": [
"./skills/SKILL.md"
]
},
{
"name": "codex-cli",
"source": "./skills/codex/",
"description": "Execute Codex CLI for code analysis, refactoring, and automated code changes with file references (@syntax) and structured output",
"version": "1.0.0",
"author": {
"name": "Claude Code Dev Workflows",
"url": "https://github.com/cexll/myclaude"
},
"homepage": "https://github.com/cexll/myclaude",
"repository": "https://github.com/cexll/myclaude",
"license": "MIT",
"keywords": [
"codex",
"code-analysis",
"refactoring",
"automation",
"gpt-5",
"ai-coding"
],
"category": "essentials",
"strict": false,
"skills": [
"./SKILL.md"
]
},
{
"name": "gemini-cli",
"source": "./skills/gemini/",
"description": "Execute Gemini CLI for AI-powered code analysis and generation with Google's latest Gemini models",
"version": "1.0.0",
"author": {
"name": "Claude Code Dev Workflows",
"url": "https://github.com/cexll/myclaude"
},
"homepage": "https://github.com/cexll/myclaude",
"repository": "https://github.com/cexll/myclaude",
"license": "MIT",
"keywords": [
"gemini",
"google-ai",
"code-analysis",
"code-generation",
"ai-reasoning"
],
"category": "essentials",
"strict": false,
"skills": [
"./SKILL.md"
]
}
]
}

3
.gitignore vendored
View File

@@ -1,4 +1,3 @@
CLAUDE.md
.claude/
.claude-trace

View File

@@ -46,6 +46,7 @@ make install
| **[requirements-driven-workflow](docs/REQUIREMENTS-WORKFLOW.md)** | Streamlined requirements-to-code workflow | `/requirements-pilot` |
| **[development-essentials](docs/DEVELOPMENT-COMMANDS.md)** | Core development slash commands | `/code` `/debug` `/test` `/optimize` |
| **[advanced-ai-agents](docs/ADVANCED-AGENTS.md)** | GPT-5 deep reasoning integration | Agent: `gpt5` |
| **[requirements-clarity](docs/REQUIREMENTS-CLARITY.md)** | Automated requirements clarification with 100-point scoring | Auto-activated skill |
## 💡 Use Cases
@@ -62,6 +63,11 @@ make install
- Direct implementation, debugging, testing, optimization
- No workflow overhead
**Requirements Clarity** - Automated requirements engineering
- Auto-detects vague requirements and initiates clarification
- 100-point quality scoring system
- Generates complete PRD documents
## 🎯 Key Features
- **🤖 Role-Based Agents**: Specialized AI agents for each development phase
@@ -70,6 +76,7 @@ make install
- **📁 Persistent Artifacts**: All specs saved to `.claude/specs/`
- **🔌 Plugin System**: Native Claude Code plugin support
- **🔄 Flexible Workflows**: Choose full agile or lightweight development
- **🎯 Requirements Clarity**: Automated requirements clarification with quality scoring
## 📚 Documentation

View File

@@ -46,6 +46,7 @@ make install
| **[requirements-driven-workflow](docs/REQUIREMENTS-WORKFLOW.md)** | 精简的需求到代码工作流 | `/requirements-pilot` |
| **[development-essentials](docs/DEVELOPMENT-COMMANDS.md)** | 核心开发斜杠命令 | `/code` `/debug` `/test` `/optimize` |
| **[advanced-ai-agents](docs/ADVANCED-AGENTS.md)** | GPT-5 深度推理集成 | 智能体: `gpt5` |
| **[requirements-clarity](docs/REQUIREMENTS-CLARITY.md)** | 自动需求澄清100分制质量评分 | 自动激活技能 |
## 💡 使用场景
@@ -62,6 +63,11 @@ make install
- 直接实现、调试、测试、优化
- 无工作流开销
**需求澄清** - 自动化需求工程
- 自动检测模糊需求并启动澄清流程
- 100分制质量评分系统
- 生成完整的产品需求文档
## 🎯 核心特性
- **🤖 角色化智能体**: 每个开发阶段的专业 AI 智能体
@@ -70,6 +76,7 @@ make install
- **📁 持久化产物**: 所有规格保存至 `.claude/specs/`
- **🔌 插件系统**: 原生 Claude Code 插件支持
- **🔄 灵活工作流**: 选择完整敏捷或轻量开发
- **🎯 需求澄清**: 自动化需求澄清与质量评分
## 📚 文档

163
dev-workflow/README.md Normal file
View File

@@ -0,0 +1,163 @@
# /dev - 极简开发工作流
## 概述
全新设计的轻量级开发工作流,无历史包袱,专注快速交付高质量代码。
## 工作流程
```
/dev 触发
AskUserQuestion需求澄清
Codex 分析(提取要点和任务)
develop-doc-generator生成开发文档
Codex 并发开发2-5个任务
Codex 测试验证≥90%覆盖率)
完成(生成总结)
```
## 6个步骤
### 1. 需求澄清
- 使用 **AskUserQuestion** 直接问用户
- 无评分系统,无复杂逻辑
- 2-3 轮问答直到需求明确
### 2. Codex 分析
- 调用 codex 分析需求
- 提取核心功能、技术要点、任务列表2-5个
- 输出结构化分析结果
### 3. 生成开发文档
- 调用 **develop-doc-generator** agent
- 生成 `dev-plan.md`(单一开发文档)
- 包含:任务分解、文件范围、依赖关系、测试命令
### 4. 并发开发
- 基于 dev-plan.md 的任务列表
- 无依赖任务 → 并发执行
- 有冲突任务 → 串行执行
### 5. 测试验证
- 每个 codex 任务自己:
- 实现功能
- 编写测试
- 运行覆盖率
- 报告结果≥90%
### 6. 完成
- 汇总任务状态
- 记录覆盖率
## 使用方法
```bash
/dev "实现用户登录功能,支持邮箱和密码验证"
```
**无选项**,流程固定,开箱即用。
## 输出结构
```
.claude/specs/{feature_name}/
├── dev-plan.md # 开发文档agent生成
```
仅 2 个文件,极简清晰。
## 核心组件
### 工具
- **AskUserQuestion**:交互式需求澄清
- **codex**:分析、开发、测试
- **develop-doc-generator**生成开发文档subagent节省上下文
## 核心特性
### ✅ 全新设计
- 无历史项目残留
- 无复杂评分逻辑
- 无多余抽象层
### ✅ 极简编排
- orchestrator 直接控制流程
- 只用 3 个工具/组件
- 步骤清晰易懂
### ✅ 并发能力
- 2-5 个任务并行
- 自动检测依赖和冲突
- codex 独立执行
### ✅ 质量保证
- 强制 90% 覆盖率
- codex 自己测试和验证
- 失败自动重试
## 示例
```bash
# 触发
/dev "添加用户登录功能"
# 步骤 1: 需求澄清
Q: 支持哪些登录方式?
A: 邮箱 + 密码
Q: 需要记住登录状态吗?
A: 是,使用 JWT token
# 步骤 2: Codex 分析
输出:
- 核心功能:邮箱密码登录 + JWT认证
- 任务 1后端 API
- 任务 2密码加密
- 任务 3前端表单
# 步骤 3: 生成文档
dev-plan.md 已生成 ✓
# 步骤 4-5: 并发开发
[task-1] 后端API → 测试 → 92% ✓
[task-2] 密码加密 → 测试 → 95% ✓
[task-3] 前端表单 → 测试 → 91% ✓
```
## 目录结构
```
dev-workflow/
├── README.md # 本文档
├── commands/
│ └── dev.md # 工作流定义
└── agents/
└── develop-doc-generator.md # 文档生成器
```
极简结构,只有 3 个文件。
## 适用场景
**适合**
- 任何规模的功能开发
- 需要快速迭代
- 需要高测试覆盖率
- 希望并发提速
## 设计原则
1. **KISS**:保持简单愚蠢
2. **即用即抛**:无持久化配置
3. **质量优先**:强制 90% 覆盖率
4. **并发优先**:充分利用 codex 能力
5. **无历史包袱**:全新设计,不受其他项目影响
---
**哲学**:像 Linus 一样对复杂度零容忍,交付能立刻用的最小方案。

View File

@@ -0,0 +1,114 @@
---
name: dev-plan-generator
description: Use this agent when you need to generate a structured development plan document (`dev-plan.md`) that breaks down a feature into concrete implementation tasks with testing requirements and acceptance criteria. This agent should be called after requirements analysis and before actual implementation begins.\n\n<example>\nContext: User is orchestrating a feature development workflow and needs to create a development plan after Codex analysis is complete.\nuser: "Create a development plan for the user authentication feature based on the requirements and analysis"\nassistant: "I'll use the Task tool to launch the dev-plan-generator agent to create the structured development plan document."\n<commentary>\nThe user needs a dev-plan.md document generated from requirements and analysis. Use the dev-plan-generator agent to create the structured task breakdown.\n</commentary>\n</example>\n\n<example>\nContext: Orchestrator has completed requirements gathering and Codex analysis for a new feature and needs to generate the development plan before moving to implementation.\nuser: "We've completed the analysis for the payment integration feature. Generate the development plan."\nassistant: "I'm going to use the Task tool to launch the dev-plan-generator agent to create the dev-plan.md document with task breakdown and testing requirements."\n<commentary>\nThis is the step in the workflow where the development plan document needs to be generated. Use the dev-plan-generator agent to create the structured plan.\n</commentary>\n</example>\n\n<example>\nContext: User is working through a requirements-driven workflow and has just approved the technical specifications.\nuser: "The specs look good. Let's move forward with creating the implementation plan."\nassistant: "I'll use the Task tool to launch the dev-plan-generator agent to generate the dev-plan.md document with the task breakdown."\n<commentary>\nAfter spec approval, the next step is generating the development plan. Use the dev-plan-generator agent to create the structured document.\n</commentary>\n</example>
tools: Glob, Grep, Read, Edit, Write, TodoWrite
model: sonnet
color: green
---
You are a specialized Development Plan Document Generator. Your sole responsibility is to create structured, actionable development plan documents (`dev-plan.md`) that break down features into concrete implementation tasks.
## Your Role
You receive context from an orchestrator including:
- Feature requirements description
- Codex analysis results (feature highlights, task decomposition)
- Feature name (in kebab-case format)
Your output is a single file: `./.claude/specs/{feature_name}/dev-plan.md`
## Document Structure You Must Follow
```markdown
# {Feature Name} - 开发计划
## 功能概述
[一句话描述核心功能]
## 任务分解
### 任务 1: [任务名称]
- **ID**: task-1
- **描述**: [具体要做什么]
- **文件范围**: [涉及的目录或文件,如 src/auth/**, tests/auth/]
- **依赖**: [无 或 依赖 task-x]
- **测试命令**: [如 pytest tests/auth --cov=src/auth --cov-report=term]
- **测试重点**: [需要覆盖的场景]
### 任务 2: [任务名称]
...
2-5个任务
## 验收标准
- [ ] 功能点 1
- [ ] 功能点 2
- [ ] 所有单元测试通过
- [ ] 代码覆盖率 ≥90%
## 技术要点
- [关键技术决策]
- [需要注意的约束]
```
## Generation Rules You Must Enforce
1. **Task Count**: Generate 2-5 tasks (no more, no less unless the feature is extremely simple or complex)
2. **Task Requirements**: Each task MUST include:
- Clear ID (task-1, task-2, etc.)
- Specific description of what needs to be done
- Explicit file scope (directories or files affected)
- Dependency declaration ("无" or "依赖 task-x")
- Complete test command with coverage parameters
- Testing focus points (scenarios to cover)
3. **Task Independence**: Design tasks to be as independent as possible to enable parallel execution
4. **Test Commands**: Must include coverage parameters (e.g., `--cov=module --cov-report=term` for pytest, `--coverage` for npm)
5. **Coverage Threshold**: Always require ≥90% code coverage in acceptance criteria
## Your Workflow
1. **Analyze Input**: Review the requirements description and Codex analysis results
2. **Identify Tasks**: Break down the feature into 2-5 logical, independent tasks
3. **Determine Dependencies**: Map out which tasks depend on others (minimize dependencies)
4. **Specify Testing**: For each task, define the exact test command and coverage requirements
5. **Define Acceptance**: List concrete, measurable acceptance criteria including the 90% coverage requirement
6. **Document Technical Points**: Note key technical decisions and constraints
7. **Write File**: Use the Write tool to create `./.claude/specs/{feature_name}/dev-plan.md`
## Quality Checks Before Writing
- [ ] Task count is between 2-5
- [ ] Every task has all 6 required fields (ID, 描述, 文件范围, 依赖, 测试命令, 测试重点)
- [ ] Test commands include coverage parameters
- [ ] Dependencies are explicitly stated
- [ ] Acceptance criteria includes 90% coverage requirement
- [ ] File scope is specific (not vague like "all files")
- [ ] Testing focus is concrete (not generic like "test everything")
## Critical Constraints
- **Document Only**: You generate documentation. You do NOT execute code, run tests, or modify source files.
- **Single Output**: You produce exactly one file: `dev-plan.md` in the correct location
- **Path Accuracy**: The path must be `./.claude/specs/{feature_name}/dev-plan.md` where {feature_name} matches the input
- **Chinese Language**: The document must be in Chinese (as shown in the structure)
- **Structured Format**: Follow the exact markdown structure provided
## Example Output Quality
Refer to the user login example in your instructions as the quality benchmark. Your outputs should have:
- Clear, actionable task descriptions
- Specific file paths (not generic)
- Realistic test commands for the actual tech stack
- Concrete testing scenarios (not abstract)
- Measurable acceptance criteria
- Relevant technical decisions
## Error Handling
If the input context is incomplete or unclear:
1. Request the missing information explicitly
2. Do NOT proceed with generating a low-quality document
3. Do NOT make up requirements or technical details
4. Ask for clarification on: feature scope, tech stack, testing framework, file structure
Remember: Your document will be used by other agents to implement the feature. Precision and completeness are critical. Every field must be filled with specific, actionable information.

View File

@@ -0,0 +1,105 @@
---
description: Extreme lightweight end-to-end development workflow with requirements clarification, parallel codex execution, and mandatory 90% test coverage
---
You are the /dev Workflow Orchestrator, an expert development workflow manager specializing in orchestrating minimal, efficient end-to-end development processes with parallel task execution and rigorous test coverage validation.
**Core Responsibilities**
- Orchestrate a streamlined 6-step development workflow:
1. Requirement clarification through targeted questioning
2. Technical analysis using Codex
3. Development documentation generation
4. Parallel development execution
5. Coverage validation (≥90% requirement)
6. Completion summary
**Workflow Execution**
- **Step 1: Requirement Clarification**
- Use AskUserQuestion to clarify requirements directly
- Focus questions on functional boundaries, inputs/outputs, constraints, testing
- Iterate 2-3 rounds until clear; rely on judgment; keep questions concise
- **Step 2: Codex Analysis**
- Run:
```bash
uv run ~/.claude/skills/codex/scripts/codex.py "分析以下需求并提取开发要点:
需求描述:
[用户需求 + 澄清后的细节]
请输出:
1. 核心功能(一句话)
2. 关键技术点
3. 可并发的任务分解2-5个
- 任务ID
- 任务描述
- 涉及文件/目录
- 是否依赖其他任务
- 测试重点
" "gpt-5.1-codex"
```
- Extract core functionality, technical key points, and 2-5 parallelizable tasks with full metadata
- **Step 3: Generate Development Documentation**
- Use Task tool to invoke develop-doc-generator:
```
基于以下分析结果生成开发文档:
[Codex 分析输出]
输出文件:./.claude/specs/{feature_name}/dev-plan.md
包含:
1. 功能概述
2. 任务列表2-5个并发任务
- 每个任务ID、描述、文件范围、依赖、测试命令
3. 验收标准
4. 覆盖率要求≥90%
```
- **Step 4: Parallel Development Execution**
- For each task in `dev-plan.md` run:
```bash
uv run ~/.claude/skills/codex/scripts/codex.py "实现任务:[任务ID]
参考文档:@.claude/specs/{feature_name}/dev-plan.md
你的职责:
1. 实现功能代码
2. 编写单元测试
3. 运行测试 + 覆盖率
4. 报告覆盖率结果
文件范围:[任务的文件范围]
测试命令:[任务指定的测试命令]
覆盖率目标≥90%
" "gpt-5.1-codex"
```
- Execute independent tasks concurrently; serialize conflicting ones; track coverage reports
- **Step 5: Coverage Validation**
- Validate each tasks coverage:
- All ≥90% → pass
- Any <90% → request more tests (max 2 rounds)
- **Step 6: Completion Summary**
- Provide completed task list, coverage per task, key file changes
**Error Handling**
- Codex failure: retry once, then log and continue
- Insufficient coverage: request more tests (max 2 rounds)
- Dependency conflicts: serialize automatically
**Quality Standards**
- Code coverage ≥90%
- 2-5 genuinely parallelizable tasks
- Documentation must be minimal yet actionable
- No verbose implementations; only essential code
**Communication Style**
- Be direct and concise
- Report progress at each workflow step
- Highlight blockers immediately
- Provide actionable next steps when coverage fails
- Prioritize speed via parallelization while enforcing coverage validation

View File

@@ -0,0 +1,253 @@
# Development Essentials - Core Development Commands
核心开发命令套件,提供日常开发所需的所有基础命令。无需工作流开销,直接执行开发任务。
## 📋 命令列表
### 1. `/ask` - 技术咨询
**用途**: 架构问题咨询和技术决策指导
**适用场景**: 需要架构建议、技术选型、系统设计方案时
**特点**:
- 四位架构顾问协同:系统设计师、技术策略师、可扩展性顾问、风险分析师
- 遵循 KISS、YAGNI、SOLID 原则
- 提供架构分析、设计建议、技术指导和实施策略
- **不生成代码**,专注于架构咨询
**使用示例**:
```bash
/ask "如何设计一个支持百万并发的消息队列系统?"
/ask "微服务架构中应该如何处理分布式事务?"
```
---
### 2. `/code` - 功能实现
**用途**: 直接实现新功能或特性
**适用场景**: 需要快速开发新功能时
**特点**:
- 四位开发专家协同:架构师、实现工程师、集成专家、代码审查员
- 渐进式开发,每步验证
- 包含完整的实现计划、代码实现、集成指南和测试策略
- 生成可运行的高质量代码
**使用示例**:
```bash
/code "实现JWT认证中间件"
/code "添加用户头像上传功能"
```
---
### 3. `/debug` - 系统调试
**用途**: 使用 UltraThink 方法系统性调试问题
**适用场景**: 遇到复杂bug或系统性问题时
**特点**:
- 四位专家协同:架构师、研究员、编码员、测试员
- UltraThink 反思阶段:综合所有洞察形成解决方案
- 生成5-7个假设逐步缩减到1-2个最可能的原因
- 在实施修复前要求用户确认诊断结果
- 证据驱动的系统性问题分析
**使用示例**:
```bash
/debug "API响应时间突然增加10倍"
/debug "生产环境内存泄漏问题"
```
---
### 4. `/test` - 测试策略
**用途**: 设计和实现全面的测试策略
**适用场景**: 需要为组件或功能编写测试时
**特点**:
- 四位测试专家:测试架构师、单元测试专家、集成测试工程师、质量验证员
- 测试金字塔策略(单元/集成/端到端比例)
- 提供测试覆盖率分析和优先级建议
- 包含 CI/CD 集成计划
**使用示例**:
```bash
/test "用户认证模块"
/test "支付处理流程"
```
---
### 5. `/optimize` - 性能优化
**用途**: 识别和优化性能瓶颈
**适用场景**: 系统存在性能问题或需要提升性能时
**特点**:
- 四位优化专家:性能分析师、算法工程师、资源管理员、可扩展性架构师
- 建立性能基线和量化指标
- 优化算法复杂度、内存使用、I/O操作
- 设计水平扩展和并发处理方案
**使用示例**:
```bash
/optimize "数据库查询性能"
/optimize "API响应时间优化到200ms以内"
```
---
### 6. `/review` - 代码审查
**用途**: 全方位代码质量审查
**适用场景**: 需要审查代码质量、安全性和架构设计时
**特点**:
- 四位审查专家:质量审计员、安全分析师、性能审查员、架构评估员
- 多维度审查:可读性、安全性、性能、架构设计
- 提供优先级分类的改进建议
- 包含具体代码示例和重构建议
**使用示例**:
```bash
/review "src/auth/middleware.ts"
/review "支付模块代码"
```
---
### 7. `/bugfix` - Bug修复
**用途**: 快速定位和修复Bug
**适用场景**: 需要修复已知Bug时
**特点**:
- 专注于快速修复
- 包含验证流程
- 确保修复不引入新问题
**使用示例**:
```bash
/bugfix "登录失败后session未清理"
/bugfix "订单状态更新不及时"
```
---
### 8. `/refactor` - 代码重构
**用途**: 改进代码结构和可维护性
**适用场景**: 代码质量下降或需要优化代码结构时
**特点**:
- 保持功能不变
- 提升代码质量和可维护性
- 遵循设计模式和最佳实践
**使用示例**:
```bash
/refactor "将用户管理模块拆分为独立服务"
/refactor "优化支付流程代码结构"
```
---
### 9. `/docs` - 文档生成
**用途**: 生成项目文档和API文档
**适用场景**: 需要为代码或API生成文档时
**特点**:
- 自动分析代码结构
- 生成清晰的文档
- 包含使用示例
**使用示例**:
```bash
/docs "API接口文档"
/docs "为认证模块生成开发者文档"
```
---
### 10. `/think` - 深度分析
**用途**: 对复杂问题进行深度思考和分析
**适用场景**: 需要全面分析复杂技术问题时
**特点**:
- 系统性思考框架
- 多角度问题分析
- 提供深入见解
**使用示例**:
```bash
/think "如何设计一个高可用的分布式系统?"
/think "微服务拆分的最佳实践是什么?"
```
---
### 11. `/enhance-prompt` - 提示词增强 🆕
**用途**: 优化和增强用户提供的指令
**适用场景**: 需要改进模糊或不清晰的指令时
**特点**:
- 自动分析指令上下文
- 消除歧义,提高清晰度
- 修正错误并提高具体性
- 立即返回增强后的提示词
- 保留代码块等特殊格式
**输出格式**:
```
### Here is an enhanced version of the original instruction that is more specific and clear:
<enhanced-prompt>增强后的提示词</enhanced-prompt>
```
**使用示例**:
```bash
/enhance-prompt "帮我做一个登录功能"
/enhance-prompt "优化一下这个API"
```
---
## 🎯 命令选择指南
| 需求场景 | 推荐命令 | 说明 |
|---------|---------|------|
| 需要架构建议 | `/ask` | 不生成代码,专注咨询 |
| 实现新功能 | `/code` | 完整的功能实现流程 |
| 调试复杂问题 | `/debug` | UltraThink系统性调试 |
| 编写测试 | `/test` | 全面的测试策略 |
| 性能优化 | `/optimize` | 性能瓶颈分析和优化 |
| 代码审查 | `/review` | 多维度质量审查 |
| 修复Bug | `/bugfix` | 快速定位和修复 |
| 重构代码 | `/refactor` | 提升代码质量 |
| 生成文档 | `/docs` | API和开发者文档 |
| 深度思考 | `/think` | 复杂问题分析 |
| 优化指令 | `/enhance-prompt` | 提示词增强 |
## 🔧 代理列表
Development Essentials 模块包含以下专用代理:
- `code` - 代码实现代理
- `bugfix` - Bug修复代理
- `bugfix-verify` - Bug验证代理
- `code-optimize` - 代码优化代理
- `debug` - 调试分析代理
- `develop` - 通用开发代理
## 📖 使用原则
1. **直接执行**: 无需工作流开销,直接运行命令
2. **专注单一任务**: 每个命令聚焦特定开发任务
3. **质量优先**: 所有命令都包含质量验证环节
4. **实用主义**: KISS/YAGNI/DRY 原则贯穿始终
5. **上下文感知**: 自动理解项目结构和编码规范
## 🔗 相关文档
- [主文档](../README.md) - 项目总览
- [BMAD工作流](../docs/BMAD-WORKFLOW.md) - 完整敏捷流程
- [Requirements工作流](../docs/REQUIREMENTS-WORKFLOW.md) - 轻量级开发流程
- [插件系统](../PLUGIN_README.md) - 插件安装和管理
---
**提示**: 这些命令可以单独使用,也可以组合使用。例如:`/code``/test``/review``/optimize` 构成一个完整的开发周期。

View File

@@ -0,0 +1,9 @@
`/enhance-prompt <task info>`
Here is an instruction that I'd like to give you, but it needs to be improved. Rewrite and enhance this instruction to make it clearer, more specific, less ambiguous, and correct any mistakes. Do not use any tools: reply immediately with your answer, even if you're not sure. Consider the context of our conversation history when enhancing the prompt. If there is code in triple backticks (```) consider whether it is a code sample and should remain unchanged.Reply with the following format:
### BEGIN RESPONSE
<enhanced-prompt>enhanced prompt goes here</enhanced-prompt>
### END RESPONSE

152
skills/codex/SKILL.md Normal file
View File

@@ -0,0 +1,152 @@
---
name: codex
description: Execute Codex CLI for code analysis, refactoring, and automated code changes. Use when you need to delegate complex code tasks to Codex AI with file references (@syntax) and structured output.
---
# Codex CLI Integration
## Overview
Execute Codex CLI commands and parse structured JSON responses. Supports file references via `@` syntax, multiple models, and sandbox controls.
## When to Use
- Complex code analysis requiring deep understanding
- Large-scale refactoring across multiple files
- Automated code generation with safety controls
- Tasks requiring specialized reasoning models (gpt-5.1, gpt-5.1-codex)
## Usage
**Mandatory**: Run every automated invocation through the Bash tool in the foreground with the command below, keeping the `timeout` parameter fixed at `7200000` milliseconds (do not change it or use any other entry point).
```bash
uv run ~/.claude/skills/codex/scripts/codex.py "<task>" [model] [working_dir]
```
**Optional methods** (direct execution or via Python):
```bash
~/.claude/skills/codex/scripts/codex.py "<task>" [model] [working_dir]
# or
python3 ~/.claude/skills/codex/scripts/codex.py "<task>" [model] [working_dir]
```
Resume a session:
```bash
uv run ~/.claude/skills/codex/scripts/codex.py resume <session_id> "<task>" [model] [working_dir]
```
## Timeout Control
- **Built-in**: Script enforces 2-hour timeout by default
- **Override**: Set `CODEX_TIMEOUT` environment variable (in milliseconds, e.g., `CODEX_TIMEOUT=3600000` for 1 hour)
- **Behavior**: On timeout, sends SIGTERM, then SIGKILL after 5s if process doesn't exit
- **Exit code**: Returns 124 on timeout (consistent with GNU timeout)
- **Bash tool**: Always set `timeout: 7200000` parameter for double protection
### Parameters
- `task` (required): Task description, supports `@file` references
- `model` (optional): Model to use (default: gpt-5.1-codex)
- `gpt-5.1-codex`: Default, optimized for code
- `gpt-5.1`: Fast general purpose
- `working_dir` (optional): Working directory (default: current)
### Return Format
Extracts `agent_message` from Codex JSON stream and appends session ID:
```
Agent response text here...
---
SESSION_ID: 019a7247-ac9d-71f3-89e2-a823dbd8fd14
```
Error format (stderr):
```
ERROR: Error message
```
### Invocation Pattern
All automated executions may only invoke `uv run ~/.claude/skills/codex/scripts/codex.py "<task>" ...` through the Bash tool in the foreground, and the `timeout` must remain fixed at `7200000` (non-negotiable):
```
Bash tool parameters:
- command: uv run ~/.claude/skills/codex/scripts/codex.py "<task>" [model] [working_dir]
- timeout: 7200000
- description: <brief description of the task>
```
Run every call in the foreground—never append `&` to background it—so logs and errors stay visible for timely interruption or diagnosis.
Alternatives:
```
# Direct execution (simplest)
- command: ~/.claude/skills/codex/scripts/codex.py "<task>" [model] [working_dir]
# Using python3
- command: python3 ~/.claude/skills/codex/scripts/codex.py "<task>" [model] [working_dir]
```
### Examples
**Basic code analysis:**
```bash
# Recommended: via uv run (auto-manages Python environment)
uv run ~/.claude/skills/codex/scripts/codex.py "explain @src/main.ts"
# timeout: 7200000
# Alternative: direct execution
~/.claude/skills/codex/scripts/codex.py "explain @src/main.ts"
```
**Refactoring with specific model:**
```bash
uv run ~/.claude/skills/codex/scripts/codex.py "refactor @src/utils for performance" "gpt-5.1-codex"
# timeout: 7200000
```
**Multi-file analysis:**
```bash
uv run ~/.claude/skills/codex/scripts/codex.py "analyze @. and find security issues" "gpt-5.1-codex" "/path/to/project"
# timeout: 7200000
```
**Resume previous session:**
```bash
# First session
uv run ~/.claude/skills/codex/scripts/codex.py "add comments to @utils.js" "gpt-5.1-codex"
# Output includes: SESSION_ID: 019a7247-ac9d-71f3-89e2-a823dbd8fd14
# Continue the conversation
uv run ~/.claude/skills/codex/scripts/codex.py resume 019a7247-ac9d-71f3-89e2-a823dbd8fd14 "now add type hints"
# timeout: 7200000
```
**Using python3 directly (alternative):**
```bash
python3 ~/.claude/skills/codex/scripts/codex.py "your task here"
```
### Large Task Protocol
- For every large task, first produce a canonical task list that enumerates the Task ID, description, file/directory scope, dependencies, test commands, and the expected Codex Bash invocation.
- Tasks without dependencies should be executed concurrently via multiple foreground Bash calls (you can keep separate terminal windows) and each run must log start/end times plus any shared resource usage.
- Reuse context aggressively (such as @spec.md or prior analysis output), and after concurrent execution finishes, reconcile against the task list to report which items completed and which slipped.
| ID | Description | Scope | Dependencies | Tests | Command |
| --- | --- | --- | --- | --- | --- |
| T1 | Review @spec.md to extract requirements | docs/, @spec.md | None | None | uv run ~/.claude/skills/codex/scripts/codex.py "analyze requirements @spec.md" |
| T2 | Implement the module and add test cases | src/module | T1 | npm test -- --runInBand | uv run ~/.claude/skills/codex/scripts/codex.py "implement and test @src/module" |
## Notes
- **Recommended**: Use `uv run` for automatic Python environment management (requires uv installed)
- **Alternative**: Direct execution `./codex.py` (uses system Python via shebang)
- Python implementation using standard library (zero dependencies)
- All automated runs must use the Bash tool with the fixed timeout to provide dual timeout protection and unified logging/exit semantics; any alternative approach is limited to manual foreground execution.
- Cross-platform compatible (Windows/macOS/Linux)
- PEP 723 compliant (inline script metadata)
- Runs with `--dangerously-bypass-approvals-and-sandbox` for automation (new sessions only)
- Uses `--skip-git-repo-check` to work in any directory
- Streams progress, returns only final agent message
- Every execution returns a session ID for resuming conversations
- Requires Codex CLI installed and authenticated

296
skills/codex/scripts/codex.py Executable file
View File

@@ -0,0 +1,296 @@
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.8"
# dependencies = []
# ///
"""
Codex CLI wrapper with cross-platform support and session management.
**FIXED**: Auto-detect long inputs and use stdin mode to avoid shell argument issues.
Usage:
New session: uv run codex.py "task" [model] [workdir]
Resume: uv run codex.py resume <session_id> "task" [model] [workdir]
Alternative: python3 codex.py "task"
Direct exec: ./codex.py "task"
"""
import subprocess
import json
import sys
import os
from typing import Optional
DEFAULT_MODEL = 'gpt-5.1-codex'
DEFAULT_WORKDIR = '.'
DEFAULT_TIMEOUT = 7200 # 2 hours in seconds
FORCE_KILL_DELAY = 5
def log_error(message: str):
"""输出错误信息到 stderr"""
sys.stderr.write(f"ERROR: {message}\n")
def log_warn(message: str):
"""输出警告信息到 stderr"""
sys.stderr.write(f"WARN: {message}\n")
def log_info(message: str):
"""输出信息到 stderr"""
sys.stderr.write(f"INFO: {message}\n")
def resolve_timeout() -> int:
"""解析超时配置(秒)"""
raw = os.environ.get('CODEX_TIMEOUT', '')
if not raw:
return DEFAULT_TIMEOUT
try:
parsed = int(raw)
if parsed <= 0:
log_warn(f"Invalid CODEX_TIMEOUT '{raw}', falling back to {DEFAULT_TIMEOUT}s")
return DEFAULT_TIMEOUT
# 环境变量是毫秒,转换为秒
return parsed // 1000 if parsed > 10000 else parsed
except ValueError:
log_warn(f"Invalid CODEX_TIMEOUT '{raw}', falling back to {DEFAULT_TIMEOUT}s")
return DEFAULT_TIMEOUT
def normalize_text(text) -> Optional[str]:
"""规范化文本:字符串或字符串数组"""
if isinstance(text, str):
return text
if isinstance(text, list):
return ''.join(text)
return None
def parse_args():
"""解析命令行参数"""
if len(sys.argv) < 2:
log_error('Task required')
sys.exit(1)
# 检测是否为 resume 模式
if sys.argv[1] == 'resume':
if len(sys.argv) < 4:
log_error('Resume mode requires: resume <session_id> <task>')
sys.exit(1)
return {
'mode': 'resume',
'session_id': sys.argv[2],
'task': sys.argv[3],
'model': sys.argv[4] if len(sys.argv) > 4 else DEFAULT_MODEL,
'workdir': sys.argv[5] if len(sys.argv) > 5 else DEFAULT_WORKDIR
}
else:
return {
'mode': 'new',
'task': sys.argv[1],
'model': sys.argv[2] if len(sys.argv) > 2 else DEFAULT_MODEL,
'workdir': sys.argv[3] if len(sys.argv) > 3 else DEFAULT_WORKDIR
}
def read_piped_task() -> Optional[str]:
"""
从 stdin 读取任务文本:
- 如果 stdin 是管道(非 tty且存在内容返回读取到的字符串
- 否则返回 None
"""
stdin = sys.stdin
if stdin is None or stdin.isatty():
return None
data = stdin.read()
return data if data else None
def should_stream_via_stdin(task_text: str, piped: bool) -> bool:
"""
判定是否通过 stdin 传递任务:
- 有管道输入
- 文本包含换行
- 文本包含反斜杠
- 文本长度 > 800
"""
if piped:
return True
if '\n' in task_text:
return True
if '\\' in task_text:
return True
if len(task_text) > 800:
return True
return False
def build_codex_args(params: dict, target_arg: str) -> list:
"""
构建 codex CLI 参数
Args:
params: 参数字典
target_arg: 最终传递给 codex 的参数('-' 或具体 task 文本)
"""
if params['mode'] == 'resume':
return [
'codex', 'e',
'--skip-git-repo-check',
'--json',
'resume',
params['session_id'],
target_arg
]
else:
base_args = [
'codex', 'e',
'-m', params['model'],
'--dangerously-bypass-approvals-and-sandbox',
'--skip-git-repo-check',
'-C', params['workdir'],
'--json',
target_arg
]
return base_args
def run_codex_process(codex_args, task_text: str, use_stdin: bool, timeout_sec: int):
"""
启动 codex 子进程,处理 stdin / JSON 行输出和错误,成功时返回 (last_agent_message, thread_id)。
失败路径上负责日志和退出码。
"""
thread_id: Optional[str] = None
last_agent_message: Optional[str] = None
process: Optional[subprocess.Popen] = None
try:
# 启动 codex 子进程(文本模式管道)
process = subprocess.Popen(
codex_args,
stdin=subprocess.PIPE if use_stdin else None,
stdout=subprocess.PIPE,
stderr=sys.stderr,
text=True,
bufsize=1,
)
# 如果使用 stdin 模式,写入任务到 stdin 并关闭
if use_stdin and process.stdin is not None:
process.stdin.write(task_text)
process.stdin.close()
# 逐行解析 JSON 输出
if process.stdout is None:
log_error('Codex stdout pipe not available')
sys.exit(1)
for line in process.stdout:
line = line.strip()
if not line:
continue
try:
event = json.loads(line)
# 捕获 thread_id
if event.get('type') == 'thread.started':
thread_id = event.get('thread_id')
# 捕获 agent_message
if (event.get('type') == 'item.completed' and
event.get('item', {}).get('type') == 'agent_message'):
text = normalize_text(event['item'].get('text'))
if text:
last_agent_message = text
except json.JSONDecodeError:
log_warn(f"Failed to parse line: {line}")
# 等待进程结束并检查退出码
returncode = process.wait(timeout=timeout_sec)
if returncode != 0:
log_error(f'Codex exited with status {returncode}')
sys.exit(returncode)
if not last_agent_message:
log_error('Codex completed without agent_message output')
sys.exit(1)
return last_agent_message, thread_id
except subprocess.TimeoutExpired:
log_error('Codex execution timeout')
if process is not None:
process.kill()
try:
process.wait(timeout=FORCE_KILL_DELAY)
except subprocess.TimeoutExpired:
pass
sys.exit(124)
except FileNotFoundError:
log_error("codex command not found in PATH")
sys.exit(127)
except KeyboardInterrupt:
log_error("Codex interrupted by user")
if process is not None:
process.terminate()
try:
process.wait(timeout=FORCE_KILL_DELAY)
except subprocess.TimeoutExpired:
process.kill()
sys.exit(130)
def main():
params = parse_args()
timeout_sec = resolve_timeout()
piped_task = read_piped_task()
piped = piped_task is not None
task_text = piped_task if piped else params['task']
use_stdin = should_stream_via_stdin(task_text, piped)
if use_stdin:
reasons = []
if piped:
reasons.append('piped input')
if '\n' in task_text:
reasons.append('newline')
if '\\' in task_text:
reasons.append('backslash')
if len(task_text) > 800:
reasons.append('length>800')
if reasons:
log_warn(f"Using stdin mode for task due to: {', '.join(reasons)}")
target_arg = '-' if use_stdin else params['task']
codex_args = build_codex_args(params, target_arg)
log_info('codex running...')
last_agent_message, thread_id = run_codex_process(
codex_args=codex_args,
task_text=task_text,
use_stdin=use_stdin,
timeout_sec=timeout_sec,
)
# 输出 agent_message
sys.stdout.write(f"{last_agent_message}\n")
# 输出 session_id如果存在
if thread_id:
sys.stdout.write(f"\n---\nSESSION_ID: {thread_id}\n")
sys.exit(0)
if __name__ == '__main__':
main()

130
skills/gemini/SKILL.md Normal file
View File

@@ -0,0 +1,130 @@
---
name: gemini
description: Execute Gemini CLI for AI-powered code analysis and generation. Use when you need to leverage Google's Gemini models for complex reasoning tasks.
---
# Gemini CLI Integration
## Overview
Execute Gemini CLI commands with support for multiple models and flexible prompt input. Integrates Google's Gemini AI models into Claude Code workflows.
## When to Use
- Complex reasoning tasks requiring advanced AI capabilities
- Code generation and analysis with Gemini models
- Tasks requiring Google's latest AI technology
- Alternative perspective on code problems
## Usage
**推荐方式**(使用 uv run自动管理 Python 环境):
```bash
uv run ~/.claude/skills/gemini/scripts/gemini.py -m <model> -p "<prompt>" [working_dir]
```
**备选方式**(直接执行或使用 Python
```bash
~/.claude/skills/gemini/scripts/gemini.py -m <model> -p "<prompt>" [working_dir]
# 或
python3 ~/.claude/skills/gemini/scripts/gemini.py -m <model> -p "<prompt>" [working_dir]
```
## Timeout Control
- **Built-in**: Script enforces 2-hour timeout by default
- **Override**: Set `GEMINI_TIMEOUT` environment variable (in milliseconds)
- **Bash tool**: Always set `timeout: 7200000` parameter for double protection
### Parameters
- `-m, --model` (optional): Model to use (default: gemini-3-pro-preview)
- `gemini-3-pro-preview`: Latest flagship model
- `-p, --prompt` (required): Task prompt or question
- `working_dir` (optional): Working directory (default: current)
### Return Format
Plain text output from Gemini:
```text
Model response text here...
```
Error format (stderr):
```text
ERROR: Error message
```
### Invocation Pattern
When calling via Bash tool, always include the timeout parameter:
```yaml
Bash tool parameters:
- command: uv run ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "<prompt>"
- timeout: 7200000
- description: <brief description of the task>
```
Alternatives:
```yaml
# Direct execution (simplest)
- command: ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "<prompt>"
# Using python3
- command: python3 ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "<prompt>"
```
### Examples
**Basic query:**
```bash
# Recommended: via uv run
uv run ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "explain quantum computing"
# timeout: 7200000
# Alternative: direct execution
~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "explain quantum computing"
```
**Code analysis:**
```bash
uv run ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "review this code for security issues: $(cat app.py)"
# timeout: 7200000
```
**With specific working directory:**
```bash
uv run ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "analyze project structure" "/path/to/project"
# timeout: 7200000
```
**Using fast model:**
```bash
uv run ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "quick code suggestion"
# timeout: 7200000
```
**Using python3 directly (alternative):**
```bash
python3 ~/.claude/skills/gemini/scripts/gemini.py -m gemini-3-pro-preview -p "your prompt here"
```
## Notes
- **Recommended**: Use `uv run` for automatic Python environment management (requires uv installed)
- **Alternative**: Direct execution `./gemini.py` (uses system Python via shebang)
- Python implementation using standard library (zero dependencies)
- Cross-platform compatible (Windows/macOS/Linux)
- PEP 723 compliant (inline script metadata)
- Requires Gemini CLI installed and authenticated
- Supports all Gemini model variants
- Output is streamed directly from Gemini CLI

160
skills/gemini/scripts/gemini.py Executable file
View File

@@ -0,0 +1,160 @@
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.8"
# dependencies = []
# ///
"""
Gemini CLI wrapper with cross-platform support.
Usage:
uv run gemini.py -m <model> -p "<prompt>" [workdir]
python3 gemini.py -m <model> -p "<prompt>"
./gemini.py -m gemini-3-pro-preview -p "your prompt"
"""
import subprocess
import sys
import os
import argparse
DEFAULT_MODEL = 'gemini-3-pro-preview'
DEFAULT_WORKDIR = '.'
DEFAULT_TIMEOUT = 7200 # 2 hours in seconds
FORCE_KILL_DELAY = 5
def log_error(message: str):
"""输出错误信息到 stderr"""
sys.stderr.write(f"ERROR: {message}\n")
def log_warn(message: str):
"""输出警告信息到 stderr"""
sys.stderr.write(f"WARN: {message}\n")
def resolve_timeout() -> int:
"""解析超时配置(秒)"""
raw = os.environ.get('GEMINI_TIMEOUT', '')
if not raw:
return DEFAULT_TIMEOUT
try:
parsed = int(raw)
if parsed <= 0:
log_warn(f"Invalid GEMINI_TIMEOUT '{raw}', falling back to {DEFAULT_TIMEOUT}s")
return DEFAULT_TIMEOUT
# 环境变量是毫秒,转换为秒
return parsed // 1000 if parsed > 10000 else parsed
except ValueError:
log_warn(f"Invalid GEMINI_TIMEOUT '{raw}', falling back to {DEFAULT_TIMEOUT}s")
return DEFAULT_TIMEOUT
def parse_args():
"""解析命令行参数"""
parser = argparse.ArgumentParser(
description='Gemini CLI wrapper for Claude Code integration',
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument(
'-m', '--model',
default=DEFAULT_MODEL,
help=f'Gemini model to use (default: {DEFAULT_MODEL})'
)
parser.add_argument(
'-p', '--prompt',
required=True,
help='Prompt to send to Gemini'
)
parser.add_argument(
'workdir',
nargs='?',
default=DEFAULT_WORKDIR,
help='Working directory (default: current directory)'
)
return parser.parse_args()
def build_gemini_args(args) -> list:
"""构建 gemini CLI 参数"""
return [
'gemini',
'-m', args.model,
'-p', args.prompt
]
def main():
args = parse_args()
gemini_args = build_gemini_args(args)
timeout_sec = resolve_timeout()
# 如果指定了工作目录,切换到该目录
if args.workdir != DEFAULT_WORKDIR:
try:
os.chdir(args.workdir)
except FileNotFoundError:
log_error(f"Working directory not found: {args.workdir}")
sys.exit(1)
except PermissionError:
log_error(f"Permission denied: {args.workdir}")
sys.exit(1)
try:
# 启动 gemini 子进程,直接透传 stdout 和 stderr
process = subprocess.Popen(
gemini_args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1 # 行缓冲
)
# 实时输出 stdout
stdout_lines = []
for line in process.stdout:
sys.stdout.write(line)
sys.stdout.flush()
stdout_lines.append(line)
# 等待进程结束
returncode = process.wait(timeout=timeout_sec)
# 读取 stderr
stderr_output = process.stderr.read()
if stderr_output:
sys.stderr.write(stderr_output)
# 检查退出码
if returncode != 0:
log_error(f'Gemini exited with status {returncode}')
sys.exit(returncode)
sys.exit(0)
except subprocess.TimeoutExpired:
log_error(f'Gemini execution timeout ({timeout_sec}s)')
process.kill()
try:
process.wait(timeout=FORCE_KILL_DELAY)
except subprocess.TimeoutExpired:
pass
sys.exit(124)
except FileNotFoundError:
log_error("gemini command not found in PATH")
log_error("Please install Gemini CLI: https://github.com/google/generative-ai-python")
sys.exit(127)
except KeyboardInterrupt:
process.terminate()
try:
process.wait(timeout=FORCE_KILL_DELAY)
except subprocess.TimeoutExpired:
process.kill()
sys.exit(130)
if __name__ == '__main__':
main()