learn-tech/专栏/24讲吃透分布式数据库-完/22发展与局限:传统数据库在分布式领域的探索.md
2024-10-15 21:07:49 +08:00

126 lines
13 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

因收到Google相关通知网站将会择期关闭。相关通知内容
22 发展与局限:传统数据库在分布式领域的探索
从这一讲开始,我们进入实践(扩展)模块,目的是帮助你更了解现代分布式数据库,并且我会把之前学习的理论知识应用到实际案例中。
这个模块的讲解思路如下。
传统数据库分布式:传统数据库,如 Oracle、MySQL 和 PostgreSQL 没有一刻放弃在分布式领域的探索。我会介绍分布式技术如何赋能传统数据库,以及它们的局限性。
数据库中间件:虽然中间件严格来说并不包含在数据库领域内,但它是很多用户首次接触分布式数据库的切入点,故在该领域有着不可代替的作用。我会介绍数据库中间件的功能,特别是处理事务的方式,它与模块三中介绍的分布式事务还是有差别的。
当代分布式数据库:该部分重点介绍目前大家能接触到的 NewSQL、DistributedSQL 类型的数据库。重点关注它们在异地多活、容灾等方面的实践。
其他类型数据库与数据库选型:查缺补漏为你介绍其他类型的分布式数据库,扩宽你的视野。最后结合金融、电信和电商等场景,为你介绍这些行业是如何选择分布式数据库的。
以上就是本模块整体的讲解流程,那么现在让我们进入第一个问题的学习,来看看传统数据库如何进行分布式化改造。
传统数据库分布式化
我在模块一中介绍过,业务应用系统可以按照交易类型分为 OLTP 场景和 OLAP 场景两大类。OLTP 是面向交易的处理过程,单笔交易的数据量小,但是要在很短的时间内给出结果,典型场景包括购物、转账等;而 OLAP 场景通常是基于大数据集的运算,典型场景包括生成各种报表等。
OLTP 与 OLAP 两种场景有很大的差异,虽然传统数据库在其早期是将两者融合在一起的。但是随着它们向分布式,特别是 Sharding分片领域转型OLAP 类型的数据逐步被抛弃,它们将所有的精力集中在了 OLTP 上。
OLTP 场景通常有三个特点:
写多读少,而且读操作的复杂度较低,一般不涉及大数据集的汇总计算;
低延时,用户对于延时的容忍度较低,通常在 500 毫秒以内,稍微放大一些也就是秒级,超过 5 秒的延时通常是无法接受的;
高并发,并发量随着业务量而增长,没有理论上限。
传统数据库,比如 MySQL 和 Oracle 这样的关系型数据库就是服务于 OLTP 场景的,但我们一般认为它们并不是分布式数据库。这是为什么呢?因为这些数据库传统都是单节点的,而我们说的分布式数据库都是多节点的。
传统关系型数据库是单机模式的也就是主要负载运行在一台机器上。这样数据库的并发处理能力与单机的资源配置是线性相关的所以并发处理能力的上限也就受限于单机配置的上限。这种依靠提升单机资源配置来扩展性能的方式被称为垂直扩展Scale Up。我们之前介绍过垂直扩展是瓶颈的因为物理机单机配置上限的提升是相对缓慢的。这意味着在一定时期内依赖垂直扩展的数据库总会存在性能的天花板。
那么传统数据库的单机模式可以变为分布式吗?答案是可以的。这些传统数据库在维持关系型数据库特性不变的基础上,可以通过水平扩展,也就是 Sharding 模式,增加机器数量、提供远高于单体数据库的并发量。这个并发量几乎不受单机性能限制,我们将这个级别的并发量称为“高并发”。这里说的“高并发”并没有一个具体的数字与之对应。不过,我可以给出一个经验值,这个“高并发”应该至少大于一万 TPS。
在 Sharding 之外,还需要引入可靠的复制技术,从而提高系统整体的可用度,这在金融级的容灾场景中非常重要。这些理念都是我在模块一中就强调过的,分片与同步才是分布式数据库的核心。
那么介绍完了传统数据库如何改造为分布式数据库的基本理念,现在让我们看看它们是如何具体操作的吧。
商业产品
我在“01 | 导论:什么是分布式数据库?聊聊它的前世今生”介绍过,商业数据库如 Oracle 通过底层存储的分布式达到数据分散的目的。其实这类数据库一直没有放弃对分布式领域的探索。现在我介绍一下 Oracle Sharding。
Oracle 数据库从 12.2 版本开始引入 Sharding 特性,集成了 NoSQL 和成熟的关系型数据库的优势到如今已经过多个版本迭代成为一整套成熟的分布式关系型数据库解决方案。Oracle Sharding 可以让用户将数据分布和复制到一组 Oracle 数据库集群中集群中的数据库只需要网络连接不需要共享软件和硬件。Oracle Sharding 可以为应用提供线性扩展能力和完全容错能力。
Oracle Sharding 主要包括下面这些组件。
Sharded databaseSDB逻辑上 SDB 是一个数据库,但是物理上 SDB 包括多个物理独立的数据库SDB 类似一个数据库池pool数据库池中包括多个数据库Shard
ShardsSDB 包括多个物理独立的数据库,每一个数据库都称为 shard每个 shard 数据库位于不同的服务器。这些 Shard 被部署在独立的机器上,每个 shard 数据库中保存表的不同数据集,但是每个 Shard 中都有相同的列,也就是说这些 Shard 是按行进行分片的。
Shard catalog是一个 Oracle 数据库,用于集中存储管理 SDB 配置信息,是 SDB 的核心。SDB 配置变化,比如添加/删除 shard 等,都记录在 Shard catalog。如果应用查询多个 shard 中的数据,那么由 Shard catalog 统一协调分配。Shard catalog 需要进行 HA也就是高可用部署。因为里面的数据非常重要一旦丢失会造成整个数据库不可用。
Shard directorsGlobal Data ServiceGDS实现对 Sharding 的集中部署和管理。GSM 是 GDS 的核心组件GSM 作为 Shard director。GSM 类似监听器,将客户端对 SDB 的请求路由到对应的 shard负载均衡客户端的访问。
Oracle Sharding 优点如下。
线性扩展:因为每个 shard 是一个独立的数据库,通过增加新的 Shard 节点,来线性扩展性能,自动 rebalance 数据。
失败隔离:由于 Shard 是一种 shared-nothing 技术,每个 shard 使用独立的硬件,因此一个 shard 节点出现故障,只会影响到这个 shard 存放的数据,而不会影响到其他 shard。
按照地理位置分布数据:可以选择根据地理位置不同,将数据存储在不同的 shard。
除了以上的优点,其缺点也非常明显。
用户设计复杂:不同于传统的 RAC 模式Sharding 需要用户对表进行严格设计,从而才能发挥该模式扩展性与可用性方面的优势。同时,对于老系统迁移,这往往意味着要修改现有代码。
跨分片性能低:跨分片事务,聚合查询的性能很低。一般比单分片低 10%。
最后一个缺点就是商业数据库的老问题,性价比低。这个我在后面会进一步阐述。
那么商业方案看起来很好,但是如果你更喜欢开源的解决方案,下面我会介绍开源传统数据库对这个问题的思考。
开源定制
单体开源数据要向分布式数据库演进,就要解决写入性能不足的问题。
最简单直接的办法就是分库分表。分库分表方案就是在多个单体数据库之前增加代理节点,本质上是增加了 SQL 路由功能。这样,代理节点首先解析客户端请求,再根据数据的分布情况,将请求转发到对应的单体数据库。代理节点分为“客户端 + 单体数据库”和“中间件 + 单体数据库”两个模式。
客户端组件 + 单体数据库通过独立的逻辑层建立数据分片和路由规则,实现单体数据库的初步管理,使应用能够对接多个单体数据库,实现并发、存储能力的扩展。其作为应用系统的一部分,对业务侵入比较深。这种客户端组件的典型产品是 Apache ShardingShpere 的 JDBC 客户端模式,下图就是该模式的架构图。
Apache ShardingShpere 的 JDBC 客户端模式架构图
代理中间件 + 单体数据库以独立中间件的方式,管理数据规则和路由规则,以独立进程存在,与业务应用层和单体数据库相隔离,减少了对应用的影响。随着代理中间件的发展,还会衍生出部分分布式事务处理能力。这种中间件的典型产品是 MyCat、Apache ShardingShpere 的 Proxy 模式。
Apache ShardingShpere 的 Proxy 模式架构图
代理节点需要实现三个主要功能,它们分别是客户端接入、简单的查询处理器和进程管理中的访问控制。另外,分库分表方案还有一个重要的功能,那就是分片信息管理,分片信息就是数据分布情况。不过考虑分片信息也存在多副本的一致性的问题,大多数情况下它会独立出来。显然,如果把每一次的事务写入都限制在一个单体数据库内,业务场景就会很受局限。
因此,跨库事务成为必不可少的功能,但是单体数据库是不感知这个事情的,所以我们就要在代理节点增加分布式事务组件。同时,简单的分库分表不能满足全局性的查询需求,因为每个数据节点只能看到一部分数据,有些查询运算是无法处理的,比如排序、多表关联等。所以,代理节点要增强查询计算能力,支持跨多个单体数据库的查询。更多相关内容我会在下一讲介绍。
这时离分布式数据库还差重要的一步,那就是逻辑时钟。我们在分布式系统模块已经介绍了逻辑时钟的意义,它是实现数据一致性的必要条件。加上这最后一块拼图,这类分布式数据库区别于单体数据库的功能也就介绍完整了,它们是分片、分布式事务、跨节点查询和逻辑时钟。
这类数据库一般以 MySQL 或 PostgreSQL 为基础进行开发。MySQL 类的解决方案有 TDSQL、Vitess 和具有 JDTX 的 ShardingShpere。PGXCPostgreSQL-XC的本意是指一种以 PostgreSQL 为内核的开源分布式数据库。因为 PostgreSQL 的开放软件版权协议,很多厂商在 PGXC 上二次开发,推出自己的产品。不过,这些改动都没有变更主体架构风格,所以我把这类产品统称为 PGXC 风格,其中包括 TBase、GuassDB 和 AntDB 等。
以上我们讨论了开源领域中传统数据库在分布式领域中的尝试。但是,此类方案是有一些局限的,看看都有哪些。
局限
目前传统数据库在分布式领域内的探索,我们可以总结为“商业靠实力而开源靠合作”,它们分别打开了自己的一片天地。但是,它们长久的技术积累不仅带来了功能的丰富,同时一些局限也是其无法克服的。
性价比。以 Oracle Sharding 为代表的商业解决方案,虽然功能很完善,同时能满足多种场景,对传统 Oracle 用户有极强的吸引力。但是其费用与收益其实是不成正比的,其对分片事务支持有限,同时跨分片查询性能很低。这些重要功能的缺失与其高昂的售价相比是极不相称的。故商业的 Sharding 方案一直没有成为主流。
事务。由于传统数据库都需要复用原有的存储节点,故事务方案大多都是我们介绍过的两阶段提交这类原子提交协议。学习过模块三中分布式事务的同学都清楚,传统两阶段在性能和规模上都有很大的限制,必须采用新的事务模式才能突破这层天花板。而传统数据库的底层被锁死,很难在这个领域有更好的表现。
OLAP。传统数据库在转为分布式之前能很好地支持 OLAP。但其 Sharding 后,该过程变得越来越困难。同时随着大数据技术的崛起,它们有主动放弃该领域的趋势。而新一代的 HTAP 架构无一例外都是 NewSQL 和云原生数据库的天下,这个领域是从传统数据库发展而来的分布式数据库无法企及的。
以上我们谈的传统数据库在分布式领域的局限其实总结为一点就是,它们的底层存储引擎限制了其上层分布式功能的拓展。只有如 NewSQL 类数据库一般,使用创新的存储引擎,才能在整体上打造出功能与性能匹配的现代分布式数据库。但是,此类数据库由于发展多年,在稳定性、维护性上有不可动摇的优势,即使存在一些局限性,但其对单机版本的用户依然有很强的吸引力。
总结
这一讲,我们介绍了传统单机数据库向分布式数据库的转型尝试,它们一般经过分片、复制、分布式事务和物理时钟等过程的改造,从而打造以单体数据库为数据节点的分布式数据库。
同时我们也讨论了此类数据库的天花板,因此应该从底层去构建分布式数据库,就像 NewSQL 类数据库,才是分布式数据库发展的正途。