104 lines
12 KiB
Markdown
104 lines
12 KiB
Markdown
|
||
|
||
因收到Google相关通知,网站将会择期关闭。相关通知内容
|
||
|
||
|
||
14 大数据时代,MC如何应对新的常见问题?
|
||
你好,我是你的缓存课老师陈波,欢迎进入第 14 课时“Memcached 经典问题及解决方案”的学习。
|
||
|
||
大数据时代 Memcached 经典问题
|
||
|
||
随着互联网的快速发展和普及,人类进入了大数据时代。在大数据时代,移动设备全面融入了人们的工作和生活,各种数据以前所未有的 速度被生产、挖掘和消费。移动互联网系统也不断演进和发展,存储、计算和分析这些海量数据,以满足用户的需要。在大数据时代,大中型互联网系统具有如下特点。
|
||
|
||
|
||
首先,系统存储的数据量巨大,比如微博系统,每日有数亿条记录,历史数据达百亿甚至千亿条记录。
|
||
其次,用户多,访问量巨大,每日峰值流量高达百万级 QPS。
|
||
要存储百千亿级的海量数据,同时满足大量用户的高并发访问,互联网系统需要部署较多的服务实例,不少大中型互联网系统需要部署万级,甚至十万级的服务实例。
|
||
再次,由于大数据时代,社会信息获取扁平化,热点事件、突发事件很容易瞬间引爆,引来大量场外用户集中关注,从而形成流量洪峰。
|
||
最后,任何硬件资源都有发生故障的概率,而且存在 4 年故障效应,即服务资源在使用 4 年后,出现故障的概率会陡增;由于大中型互联网系统的部署,需要使用大量的服务器、路由器和交换机,同时部署在多个地区的不同 IDC,很多服务资源的使用时间远超 4 年,局部出现硬件故障障、网络访问异常就比较常见了。
|
||
|
||
|
||
由于互联网系统会大量使用 Memcached 作为缓存,而在使用 Memcached 的过程中,同样也会受到前面所说的系统特点的影响,从而产生特有的经典问题。
|
||
|
||
容量问题
|
||
|
||
第一个问题是容量问题。Memcached 在使用中,除了存储数据占用内存外,连接的读写缓冲、哈希表分配、辅助线程处理、进程运行等都会占用内存空间,而且操作系统本身也会占用不少内存,为了确保 Mc 的稳定运行,Mc 的内存设置,一般设为物理内存的 80%。另外,设置的内存,也不完全是存储有效数据,我上一节课讲到,每个 Item 数据存储在 chunk 时,会有部分字节浪费,另外 key 在过期、失效后,不是立即删除,而是采用延迟淘汰、异步 LRU 队尾扫描的方式清理,这些暂时没有淘汰的、过期失效的 key ,也会占用不少的存储空间。当前大数据时代,互联网系统中的很多核心业务,需要缓存的热数据在 300~500GB 以上,远远超过单机物理内存的容量。
|
||
|
||
性能瓶颈
|
||
|
||
第二个问题是性能瓶颈问题。出于系统稳定性考虑,线上 Mc 的访问,最大 QPS 要在 10~20w 以下,超过则可能会出现慢查的问题。而对中大型互联网系统,核心业务的缓存请求高达百万级 QPS,仅仅靠简单部署单个物理机、单个资源池很难达到线上的业务要求。
|
||
|
||
连接瓶颈
|
||
|
||
第三个问题是连接瓶颈的问题。出于稳定性考虑,线上 Mc 的连接数要控制在 10w 以下。以避免连接数过多,导致连接占用大量内存,从而出现命中率下降、甚至慢查超时的问题。对于大中型系统,线上实例高达万级、甚至十万级,单个实例的最小、最大连接数,一般设置在 5~60 个之间。业务实例的连接数远超过单个机器的稳定支撑范围。
|
||
|
||
硬件资源局部故障
|
||
|
||
第四个问题是硬件资源局部故障,导致的缓存体系的可用性问题。由于任何硬件资源,都有一定故障概率,而且在使用 4 年后,故障率陡增。对于数以万计的硬件设备,随时都有可能出现机器故障,从而导致 Mc 节点访问性能下降、宕机,海量访问穿透到 DB,引发 DB 过载,最终导致整个系统无法访问,引发雪崩现象。
|
||
|
||
流量洪峰下快速扩展
|
||
|
||
第五个问题是在流量洪峰的场景下,如何快速扩展的问题。大数据时代,由于信息扩散的扁平化,突发事件、重大活动发生时,海量用户同时蜂拥而至,短时间引发巨大流量。整个系统的访问量相比日常峰值增大 70% 以上,同时出现大量的极热 key 的访问,这些极热 key 所在的 Mc 节点,访问量相比日常高峰,增大 2~3 倍以上,很容易出现 CPU 飙升、带宽打满、机器负荷严重过载的现象。
|
||
|
||
Memchcaed 经典问题及应对方案
|
||
|
||
为了解决大中型互联网系统在使用 Mc 时的这些问题。我们可以使用下面的解决方案。
|
||
|
||
Memcached 分拆缓存池
|
||
|
||
首先对系统内的核心业务数据进行分拆,让访问量大的数据,使用独立的缓存池。同时每个缓存池 4~8 个节点,这样就可以支撑足够大的容量,还避免单个缓存节点压力过大。对于缓存池的分布策略,可以采用一致性哈希分布和哈希取模分布。
|
||
|
||
一致性哈希分布算法中,首先计算 Mc 服务节点的哈希值,然后将其持续分散配置在圆中,这样每个缓存节点,实际包括大量大小各异的 N 个 hash 点。如下图所示,在数据存储或请求时,对 key 采用相同的 hash 算法,并映射到前面的那个圆中,从映射位置顺时针查找,找到的第一个 Mc 节点,就是目标存取节点。
|
||
|
||
|
||
|
||
而哈希取模分布算法,则比较简单,对 key 做 hash 后,对 Mc 节点数取模,即可找到待存取的目标 Mc 节点。
|
||
|
||
系统运行过程中,Mc 节点故障不可避免,有时候甚至短期内出现多次故障。在 Mc 节点故障下线后,如果采用一致性 hash 分布,可以方便得通过 rehash 策略,将该 Mc 节点的 hash 点、访问量,均匀分散到其他 Mc 节点。如果采用取模分布,则会直接导致 1/N 的访问 miss,N 是 Mc 资源池的节点数。
|
||
|
||
因此,对于单层 Mc 缓存架构,一致性 hash 分布配合 rehash 策略,是一个更佳的方案。通过将业务数据分拆到独立 Mc 资源池,同时在每个资源池采用合适的分布算法,可以很好的解决 Mc 使用中容量问题、性能瓶颈问题,以及连接瓶颈问题。
|
||
|
||
Master-Slave 两级架构
|
||
|
||
在系统的访问量比较大,比如峰值 QPS 达到 20w 以上时,如果缓存节点故障,即便采用一致性 hash,也会在一段时间内给 DB 造成足够大的压力,导致大量慢查询和访问超时的问题。另外,如果某些缓存服务器短期多次故障,反复上下线,多次 rehash 还会产生脏数据。对此,可以采用 Master-Slave 的两级架构方案。
|
||
|
||
在这种架构方案下,将业务正常访问的 Memcached 缓存池作为 master,然后在 master 之后,再加一个slave 资源池作 master 的热备份。slave 资源池也用 6~8 个节点,内存设置只用 master 的 1⁄2~1⁄3 即可。因为 slave 的应用,主要是考虑在 master 访问 miss 或异常时,Mc 缓存池整体的命中率不会过度下降,所以并不需要设置太大内存。
|
||
|
||
日常访问,对于读操作,直接访问 master,如果访问 miss,再访问 slave。如果 slave 命中,就将读取到的 key 回写到 master。对于写操作,set、touch 等覆盖类指令,直接更新master 和 slave;而 cas、append 等,以 master 为准,master 在 cas、add 成功后,再将 key 直接 set 到 slave,以保持 master、slave 的数据一致性。
|
||
|
||
如下图,在 master 部分节点异常后,由 slave 层来承接。任何一层,部分节点的异常,不会影响整体缓存的命中率、请求耗时等 SLA 指标。同时分布方式采用哈希取模方案,mc 节点异常不rehash,直接穿透,方案简洁,还可以避免一致性 hash 在 rehash 后产生的脏数据问题。
|
||
|
||
|
||
|
||
Master-Slave 架构,在访问量比较大的场景下,可以很好得解决局部设备故障的问题。在部分节点异常或访问 miss 时,多消耗 1ms 左右的时间,访问 slave 资源,实现以时间换系统整体可用性的目的。
|
||
|
||
M-S-L1 架构
|
||
|
||
20世纪初,意大利统计学家帕累托提出来一个观点:在任何特定群体中,重要的因子通常只占少数,而不重要的因子则占多数,因此只要能控制具有重要性的少数因子,即能控制全局。这个理论经过多年演化,就成为当前大家所熟悉的 80⁄20 定律。80/20 定律在互联网系统中也广泛存在,如 80% 的用户访问会集中在系统 20% 的功能上,80% 的请求会集中在 20% 的数据上。因此,互联网系统的数据,有明显的冷热区分,而且这个冷热程度往往比 80⁄20 更大,比如微博、微信最近一天的数据,被访问的特别频繁,而一周前的数据就很少被访问了。而且最近几天的热数据中,部分 feed 信息会被大量传播和交互,比其他 大部分数据的访问量要高很多倍,形成明显的头部请求。
|
||
|
||
头部请求,会导致日常大量访问,被集中在其中一小部分 key 上。同时,在突发新闻、重大事件发生时,请求量短期增加 50~70% 以上,而这些请求,又集中在 突发事件的关联 key 上,造就大量的热 key 的出现。热 key 具有随机性,如果集中在某少数几个节点,就会导致这 些节点的压力陡增数倍,负荷严重过载,进而引发大量查询变慢超时的问题。
|
||
|
||
为了应对日常峰值的热数据访问,特别是在应对突发事件时,洪峰流量带来的极热数据访问,我们可以通过增加 L1 层来解决。如下图所示,L1 层包含 2~6 组 L1 资源池,每个 L1 资源池,用 4~6 个节点,但内存容量只要 Master 的 1⁄10 左右即可。
|
||
|
||
|
||
|
||
如图,读请求时,首先随机选择一个 L1 进行读取,如果 miss 则访问 master,如果 master 也 miss,最后访问 slave。中途,只要任何一层命中,则对上一层资源池进行回写。
|
||
|
||
写请求时,同 Master-Slave 架构类似,对于 set 覆盖类指令,直接 set 三层所有的资源池。对于 add/cas/append 等操作,以 master 为准,master 操作成功后,将最后的 key/value set 到 L1 和 slave 层所有资源池。
|
||
|
||
由于 L1 的内存只有 master 的 1/10,且 L1 优先被读取,所以 L1 中 Memcached 只会保留最热的 key,因为 key 一旦稍微变冷,就会排到 COLD LRU 队尾,并最终被剔除。虽然 L1 的内存小,但由于 L1 里,永远只保存了 系统访问量 最大最热的数据,根据我们的统计, L1 可以满足整个系统的 60~80% 以上的请求数据。这也与 80⁄20 原则相符合。
|
||
|
||
master 存放全量的热数据,用于满足 L1 读取 miss 或异常后的访问流量。slave 用来存放绝大部分的热数据,而且与 master 存在一定的差异,用来满足 L1、master 读取 miss 或异常的访问流量。
|
||
|
||
这里面有个可以进一步优化的地方,即为确保 master、slave 的热度,让 master、slave 也尽可能只保留最热的那部分数据,可以在读取 L1 时,保留适当的概率,直接读取 master 或slave,让最热的 key 被访问到,从而不会被 master、slave 剔除。此时,访问路径需要稍做调整,即如果首先访问了 master,如果 miss,接下来只访问 slave。而如果首先访问了 slave,如果 miss,接下来只访问 master。
|
||
通过 Master-Slave-L1 架构,在流量洪峰到来之际,我们可以用很少的资源,快速部署多组L1资源池,然后加入 L1 层中,从而让整个系统的抗峰能力达到 N 倍的提升。从而以最简洁的办法,快速应对流量洪峰,把极热 key 分散到 N 组 L1 中,每个 L1 资源池只用负责 1/N 的请求。除了抗峰,另外,还可以轻松应对局部故障,避免雪崩的发生。
|
||
|
||
本课时,讲解了大数据时代下大中型互联网系统的特点,访问 Memcached 缓存时的经典问题及应对方案;还讲解了如何通过分拆缓存池、Master-Slave 双层架构,来解决 Memcached 的容量问题、性能瓶颈、连接瓶颈、局部故障的问题,以及 Master-Slave-L1 三层架构,通过多层、多副本 Memcached 体系,来更好得解决突发洪峰流量和局部故障的问题。
|
||
|
||
可以参考下面的思维导图,对这些知识点进行回顾和梳理。
|
||
|
||
|
||
|
||
|
||
|
||
|