learn-tech/专栏/分布式中间件实践之路(完)/01开篇词:从中间件开始学习分布式.md
2024-10-16 06:37:41 +08:00

65 lines
7.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

因收到Google相关通知网站将会择期关闭。相关通知内容
01 开篇词:从中间件开始学习分布式
专栏背景
谈及“分布式系统”,初学者的第一感觉多半是“高大上”和“深不可测”,犹如武林绝学——飞鸟投林、踏浪行波,行走江湖,即便没有见过,也应听过其名。
盛名之下无虚士,分布式系统凭借其高吞吐、高并发、低延迟和负载均衡的特点,迎合了互联网飞速发展背后的巨大承载量需求,民间和官方都有忠实粉丝为其著书立说,然而,大多倾向于理论,对于初学者有一定难度。鉴于此,我期望通过本专栏中的系列文章,用理论与实践结合的方式阐明分布式系统的原理、优势及面临的挑战,进而指导实践。
那么如何将理论与实践结合呢切入点的选取是关键几经考量我选择了一个最具“通用性”的角度——中间件Middleware。如果你不清楚什么是中间件那你也应该听说过 Redis、Kafka、ZooKeeper、Etcd、RabbitMQ、Nginx 之一,它们都是常用的中间件,可实现缓存、消息队列、锁以及负载均衡等。中间件是基础软件的一大类,属于可复用软件的范畴,顾名思义,中间件处于操作系统软件与用户的应用软件的中间,因此,中间件具有很好的独立性,可作为一个独立的软件系统运转。
随着互联网的飞速发展,高吞吐、高并发、低延迟和负载均衡已成为普遍需求,为此,作为枢纽的中间件也从“集中式”发展为“分布式”——如基于 Redis 的分布式缓存、基于 Kafka 的分布式消息队列、基于 ZooKeeper 的分布式锁等等。青山遮不住,毕竟东流去,随着“云时代”的到来,作为通用软件的中间件再次华丽转身,阿里云、腾讯云、华为云都竞相推出了“云中间件服务”——如 TencentDB for Redis、消息队列 CMQ、云数据库 Redis 等等,几乎应有尽有。
从另一角度来看,作为一名 IT 行业的研发人员,从普通研发工程师到架构师的成长之路上,分布式中间件是绕不过去的。青丝弹指雪,刹那芳华,如果可以,何不从现在开始学习?
专栏框架
本专栏从分布式系统切入,首先介绍了集中式系统到分布式系统的演进,并对分布式系统的特性和常见问题进行了阐述。而后进入正题,依次介绍了三大分布式中间件:分布式缓存、分布式锁以及分布式消息队列。
本专栏分为四部分:
第一部分第01课基础篇。
优秀的理论可以指导实践,为了使读者更好的理解分布式系统和中间件,本部分内容以简练的笔触介绍了集中式系统到分布式系统的演进,并对分布式系统的特性和相关理论进行了阐述。最后,从应用场景出发,引出了三大分布式中间件。
第二部分第02-06课分布式缓存。
分布式缓存是应用范围最为广泛的中间件之一,因此最先介绍它。本部分内容首先对当前主流的分布式缓存方案进行了解读;随后浓墨重彩的阐述了 Redis-Cluster 的集群原理和基于 Redis 的分布式缓存实现,并列举了实际应用中 Redis 的典型异常、根因分析及解决方案;最后,结合源码分析了 Redis-Cluster 主节点故障场景下的调优策略。
第三部分第07-10课分布式锁。
在分布式系统中,为保障不同进程争夺共享资源的安全性,需要分布式锁协助。实现分布式锁的方案很多,本部分内容首先对比分析当前主流的分布式锁方案,之后详细解读了基于 Redis 的分布式锁实现和基于 Etcd 的分布式锁实现;特别是 Etcd作为后起之秀在很多方面优于 ZooKeeper但目前在网上几乎找不到完整的方案鉴于此本部分对其进行了详细解读。
第四部分第11-13课分布式消息队列。
消息队列是分布式应用间交换信息的重要组件,可以解决应用解耦、异步消息、流量削锋等问题,是实现高性能、高可用、可伸缩和最终一致性架构中不可或缺的一环。本部分内容首先对当前主流的分布式消息队列方案进行了解读,之后深入浅出的阐述了基于 Kafka 的分布式消息队列实现和基于 RocketMQ 的分布式消息队列实现。
选择本专栏的理由
如果你正在看这段内容,我相信你对本专栏是感兴趣的,虽然我很期待你选择本专栏,但坦诚地讲,并没有十分具有说服力的理由,选择与否,主要还在于你对 “效率” 这个词的理解。只要你有足够的耐心和时间,本专栏中的部分知识在网上也能找到,当然,我并不推荐这种方式。对于分布式系统、中间件这类需要系统性学习的知识,网络搜索不仅费时费力,而且可信度存疑。
来自实践,服务实践
本专栏是我从事中间件研发的经验总结,来自实践,服务于实践。专栏主要包括分布式缓存、分布式锁、分布式消息队列三大部分内容,涉及 Redis、Etcd、Kafka、RocketMQ 等众多主流开源软件的使用方案。不仅提供关键源代码供读者快速实践,而且阐明其中原理并给出踩坑案例和调优分析,致力于授读者以渔。
理论加持,事半功倍
在 “多、快、好、省,跑步前进……”的“实用主义”熏陶下,理论二字,很多时候是令人反感的,似乎成了虚无、不切实际、缺乏实践意义的代名词。但凡事不可一概而论,事实证明,成功的实践背后常常有优秀的理论指导。
以 Redis 为例,官方推出的 Redis Cluster 号称最大可支持1000个实例的集群为什么不可以再多一点比如2000个呢又或者这样问为什么 BAT 都没有采用 Redis Cluster如果读者知道 Redis Cluster 所采用的分布式一致性协议及其原理,那么一定不难回答上面的问题。
在实践中,理论加持常常可以达到事半功倍的效果,因此,本专栏并不局限于方案的简单实现,而是在介绍方案的同时,对其背后的原理进行了深入浅出的论述。
方案对比,注重迁移
没有一种方案可以打遍全场,在中间件选型和方案设计的时候,需结合性能需求、开发成本、可扩展性、可维护性等进行综合评估。例如:基于 ZooKeeper 实现分布式锁的方案非常成熟,参考资料详实,但它并不一定适合你的应用场景,何不考虑一下 Etcd等等你是不是根本没有听说过 Etcd
本专栏介绍了三大中间件:缓存、锁、消息队列,并对每一种中间件的主流实现方案进行了对比分析,以便读者举一反三,迁移应用。