81 lines
9.3 KiB
Markdown
81 lines
9.3 KiB
Markdown
|
||
|
||
因收到Google相关通知,网站将会择期关闭。相关通知内容
|
||
|
||
|
||
29 从容应对亿级QPS访问,Redis还缺少什么?
|
||
众所周知,Redis 在线上实际运行时,面对海量数据、高并发访问,会遇到不少问题,需要进行针对性扩展及优化。本课时,我会结合微博在使用 Redis 中遇到的问题,来分析如何在生产环境下对 Redis 进行扩展改造,以应对百万级 QPS。
|
||
|
||
功能扩展
|
||
|
||
对于线上较大流量的业务,单个 Redis 实例的内存占用很容易达到数 G 的容量,对应的 aof 会占用数十 G 的空间。即便每天流量低峰时间,对 Redis 进行 rewriteaof,减少数据冗余,但由于业务数据多,写操作多,aof 文件仍然会达到 10G 以上。
|
||
|
||
此时,在 Redis 需要升级版本或修复 bug 时,如果直接重启变更,由于需要数据恢复,这个过程需要近 10 分钟的时间,时间过长,会严重影响系统的可用性。面对这种问题,可以对 Redis 扩展热升级功能,从而在毫秒级完成升级操作,完全不影响业务访问。
|
||
|
||
|
||
|
||
热升级方案如下,首先构建一个 Redis 壳程序,将 redisServer 的所有属性(包括redisDb、client等)保存为全局变量。然后将 Redis 的处理逻辑代码全部封装到动态连接库 so 文件中。Redis 第一次启动,从磁盘加载恢复数据,在后续升级时,通过指令,壳程序重新加载 Redis 新的 so 文件,即可完成功能升级,毫秒级完成 Redis 的版本升级。而且整个过程中,所有 Client 连接仍然保留,在升级成功后,原有 Client 可以继续进行读写操作,整个过程对业务完全透明。
|
||
|
||
在 Redis 使用中,也经常会遇到一些特殊业务场景,是当前 Redis 的数据结构无法很好满足的。此时可以对 Redis 进行定制化扩展。可以根据业务数据特点,扩展新的数据结构,甚至扩展新的 Redis 存储模型,来提升 Redis 的内存效率和处理性能。
|
||
|
||
|
||
|
||
在微博中,有个业务类型是关注列表。关注列表存储的是一个用户所有关注的用户 uid。关注列表可以用来验证关注关系,也可以用关注列表,进一步获取所有关注人的微博列表等。由于用户数量过于庞大,存储关注列表的 Redis 是作为一个缓存使用的,即不活跃的关注列表会很快被踢出 Redis。在再次需要这个用户的关注列表时,重新从 DB 加载,并写回 Redis。关注列表的元素全部 long,最初使用 set 存储,回种 set 时,使用 sadd 进行批量添加。线上发现,对于关注数比较多的关注列表,比如关注数有数千上万个用户,需要 sadd 上成千上万个 uid,即便分几次进行批量添加,每次也会消耗较多时间,数据回种效率较低,而且会导致 Redis 卡顿。另外,用 set 存关注列表,内存效率也比较低。
|
||
|
||
于是,我们对 Redis 扩展了 longset 数据结构。longset 本质上是一个 long 型的一维开放数组。可以采用 double-hash 进行寻址。
|
||
|
||
|
||
|
||
从 DB 加载到用户的关注列表,准备写入 Redis 前。Client 首先根据关注的 uid 列表,构建成 long 数组的二进制格式,然后通过扩展的 lsset 指令写入 Redis。Redis 接收到指令后,直接将 Client 发来的二进制格式的 long 数组作为 value 值进行存储。
|
||
|
||
longset 中的 long 数组,采用 double-hash 进行寻址,即对每个 long 值采用 2 个哈希函数计算,然后按 (h1 + n*h2)% 数组长度 的方式,确定 long 值的位置。n 从 0 开始计算,如果出现哈希冲突,即计算的哈希位置,已经有其他元素,则 n 加 1,继续向前推进计算,最大计算次数是数组的长度。
|
||
|
||
在向 longset 数据结构不断增加 long 值元素的过程中,当数组的填充率超过阀值,Redis 则返回 longset 过满的异常。此时 Client 会根据最新全量数据,构建一个容量加倍的一维 long 数组,再次 lsset 回 Redis 中。
|
||
|
||
|
||
|
||
在移动社交平台中,庞大的用户群体,相互之间会关注、订阅,用户自己会持续分享各种状态,另外这些状体数据会被其他用户阅读、评论、扩散及点赞。这样,在用户维度,就有关注数、粉丝数、各种状态行为数,然后用户每发表的一条 feed、状态,还有阅读数、评论数、转发数、表态数等。一方面会有海量 key 需要进行计数,另外一方面,一个 key 会有 N 个计数。在日常访问中,一次查询,不仅需要查询大量的 key,而且对每个 key 需要查询多个计数。
|
||
|
||
以微博为例,历史计数高达千亿级,而且随着每日新增数亿条 feed 记录,每条记录会产生 4~8 种计数,如果采用 Redis 的计数,仅仅单副本存储,历史数据需要占用 5~6T 以上的内存,每日新增 50G 以上,如果再考虑多 IDC、每个 IDC 部署 1 主多从,占用内存还要再提升一个数量级。由于微博计数,所有的 key 都是随时间递增的 long 型值,于是我们改造了 Redis 的存储结构。
|
||
|
||
首先采用 cdb 分段存储计数器,通过预先分配的内存数组 Table 存储计数,并且采用 double hash 解决冲突,避免 Redis 实现中的大量指针开销。 然后,通过 Schema 策略支持多列,一个 key id 对应的多个计数可以作为一条计数记录,还支持动态增减计数列,每列的计数内存使用精简到 bit。而且,由于 feed 计数冷热区分明显,我们进行冷热数据分离存储方案,根据时间维度,近期的热数据放在内存,之前的冷数据放在磁盘, 降低机器成本。
|
||
|
||
关于计数器服务的扩展,后面的案例分析课时,我会进一步深入介绍改造方案。
|
||
|
||
|
||
|
||
线上 Redis 使用,不管是最初的 sync 机制,还是后来的 psync 和 psync2,主从复制都会受限于复制积压缓冲。如果 slave 断开复制连接的时间较长,或者 master 某段时间写入量过大,而 slave 的复制延迟较大,slave 的复制偏移量落在 master 的复制积压缓冲之外,则会导致全量复制。
|
||
|
||
完全增量复制
|
||
|
||
于是,微博整合 Redis 的 rdb 和 aof 策略,构建了完全增量复制方案。
|
||
|
||
|
||
|
||
在完全增量方案中,aof 文件不再只有一个,而是按后缀 id 进行递增,如 aof.00001、aof.00002,当 aof 文件超过阀值,则创建下一个 id 加 1 的文件,从而滚动存储最新的写指令。在 bgsave 构建 rdb 时,rdb 文件除了记录当前的内存数据快照,还会记录 rdb 构建时间,对应 aof 文件的 id 及位置。这样 rdb 文件和其记录 aof 文件位置之后的写指令,就构成一份完整的最新数据记录。
|
||
|
||
主从复制时,master 通过独立的复制线程向 slave 同步数据。每个 slave 会创建一个复制线程。第一次复制是全量复制,之后的复制,不管 slave 断开复制连接有多久,只要 aof 文件没有被删除,都是增量复制。
|
||
|
||
第一次全量复制时,复制线程首先将 rdb 发给 slave,然后再将 rdb 记录的 aof 文件位置之后的所有数据,也发送给 slave,即可完成。整个过程不用重新构建 rdb。
|
||
|
||
|
||
|
||
后续同步时,slave 首先传递之前复制的 aof 文件的 id 及位置。master 的复制线程根据这个信息,读取对应 aof 文件位置之后的所有内容,发送给 slave,即可完成数据同步。
|
||
|
||
由于整个复制过程,master 在独立复制线程中进行,所以复制过程不影响用户的正常请求。为了减轻 master 的复制压力,全增量复制方案仍然支持 slave 嵌套,即可以在 slave 后继续挂载多个 slave,从而把复制压力分散到多个不同的 Redis 实例。
|
||
|
||
集群管理
|
||
|
||
|
||
|
||
前面讲到,Redis-Cluster 的数据存储和集群逻辑耦合,代码逻辑复杂易错,存储 slot 和 key 的映射需要额外占用较多内存,对小 value 业务影响特别明显,而且迁移效率低,迁移大 value 容易导致阻塞,另外,Cluster 复制只支持 slave 挂在 master 下,无法支持 需要较多slave、读 TPS 特别大的业务场景。除此之外,Redis 当前还只是个存储组件,线上运行中,集群管理、日常维护、状态监控报警等这些功能,要么没有支持,要么支持不便。
|
||
|
||
因此我们也基于 Redis 构建了集群存储体系。首先将 Redis 的集群功能剥离到独立系统,Redis 只关注存储,不再维护 slot 等相关的信息。通过新构建的 clusterManager 组件,负责 slot 维护,数据迁移,服务状态管理。
|
||
|
||
Redis 集群访问可以由 proxy 或 smart client 进行。对性能特别敏感的业务,可以通过 smart client 访问,避免访问多一跳。而一般业务,可以通过 Proxy 访问 Redis。
|
||
|
||
业务资源的部署、Proxy 的访问,都通过配置中心进行获取及协调。clusterManager 向配置中心注册业务资源部署,并持续探测服务状态,根据服务状态进行故障转移,切主、上下线 slave 等。proxy 和 smart client 从配置中心获取配置信息,并持续订阅服务状态的变化。
|
||
|
||
|
||
|
||
|