learn-tech/专栏/Redis核心技术与实战/24替换策略:缓存满了怎么办?.md
2024-10-16 06:37:41 +08:00

181 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

因收到Google相关通知网站将会择期关闭。相关通知内容
24 替换策略:缓存满了怎么办?
Redis 缓存使用内存来保存数据,避免业务应用从后端数据库中读取数据,可以提升应用的响应速度。那么,如果我们把所有要访问的数据都放入缓存,是不是一个很好的设计选择呢?其实,这样做的性价比反而不高。
举个例子吧。MySQL 中有 1TB 的数据,如果我们使用 Redis 把这 1TB 的数据都缓存起来虽然应用都能在内存中访问数据了但是这样配置并不合理因为性价比很低。一方面1TB 内存的价格大约是 3.5 万元,而 1TB 磁盘的价格大约是 1000 元。另一方面数据访问都是有局部性的也就是我们通常所说的“八二原理”80% 的请求实际只访问了 20% 的数据。所以,用 1TB 的内存做缓存,并没有必要。
为了保证较高的性价比,缓存的空间容量必然要小于后端数据库的数据总量。不过,内存大小毕竟有限,随着要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,该怎么办呢?
解决这个问题就涉及到缓存系统的一个重要机制,即缓存数据的淘汰机制。简单来说,数据淘汰机制包括两步:第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;第二,将这些数据从缓存中删除,为新来的数据腾出空间,
这节课上,我就来和你聊聊缓存满了之后的数据淘汰机制。通常,我们也把它叫作缓存替换机制,同时还会讲到一系列选择淘汰数据的具体策略。了解了数据淘汰机制和相应策略,我们才可以选择合理的 Redis 配置,提高缓存命中率,提升应用的访问性能。
不过,在学习淘汰策略之前,我们首先要知道设置缓存容量的依据和方法。毕竟,在实际使用缓存时,我们需要决定用多大的空间来缓存数据。
设置多大的缓存容量合适?
缓存容量设置得是否合理,会直接影响到使用缓存的性价比。我们通常希望以最小的代价去获得最大的收益,所以,把昂贵的内存资源用在关键地方就非常重要了。
就像我刚才说的,实际应用中的数据访问是具有局部性的。下面有一张图,图里有红、蓝两条线,显示了不同比例数据贡献的访问量情况。蓝线代表了“八二原理”表示的数据局部性,而红线则表示在当前应用负载下,数据局部性的变化。
我们先看看蓝线。它表示的就是“八二原理”,有 20% 的数据贡献了 80% 的访问了,而剩余的数据虽然体量很大,但只贡献了 20% 的访问量。这 80% 的数据在访问量上就形成了一条长长的尾巴,我们也称为“长尾效应”。
所以,如果按照“八二原理”来设置缓存空间容量,也就是把缓存空间容量设置为总数据量的 20% 的话,就有可能拦截到 80% 的访问。
为什么说是“有可能”呢?这是因为,“八二原理”是对大量实际应用的数据访问情况做了统计后,得出的一个统计学意义上的数据量和访问量的比例。具体到某一个应用来说,数据访问的规律会和具体的业务场景有关。对于最常被访问的 20% 的数据来说,它们贡献的访问量,既有可能超过 80%,也有可能不到 80%。
我们再通过一个电商商品的场景,来说明下“有可能”这件事儿。一方面,在商品促销时,热门商品的信息可能只占到总商品数据信息量的 5%,而这些商品信息承载的可能是超过 90% 的访问请求。这时,我们只要缓存这 5% 的数据,就能获得很好的性能收益。另一方面,如果业务应用要对所有商品信息进行查询统计,这时候,即使按照“八二原理”缓存了 20% 的商品数据,也不能获得很好的访问性能,因为 80% 的数据仍然需要从后端数据库中获取。
接下来,我们再看看数据访问局部性示意图中的红线。近年来,有些研究人员专门对互联网应用(例如视频播放网站)中,用户请求访问内容的分布情况做过分析,得到了这张图中的红线。
在这条红线上80% 的数据贡献的访问量,超过了传统的长尾效应中 80% 数据能贡献的访问量。原因在于用户的个性化需求越来越多在一个业务应用中不同用户访问的内容可能差别很大所以用户请求的数据和它们贡献的访问量比例不再具备长尾效应中的“八二原理”分布特征了。也就是说20% 的数据可能贡献不了 80% 的访问,而剩余的 80% 数据反而贡献了更多的访问量,我们称之为重尾效应。
正是因为 20% 的数据不一定能贡献 80% 的访问量,我们不能简单地按照“总数据量的 20%”来设置缓存最大空间容量。在实践过程中,我看到过的缓存容量占总数据量的比例,从 5% 到 40% 的都有。这个容量规划不能一概而论,是需要结合应用数据实际访问特征和成本开销来综合考虑的。
这其实也是我一直在和你分享的经验,系统的设计选择是一个权衡的过程:大容量缓存是能带来性能加速的收益,但是成本也会更高,而小容量缓存不一定就起不到加速访问的效果。一般来说,我会建议把缓存容量设置为总数据量的 15% 到 30%,兼顾访问性能和内存空间开销。
对于 Redis 来说,一旦确定了缓存最大容量,比如 4GB你就可以使用下面这个命令来设定缓存的大小了
CONFIG SET maxmemory 4gb
不过,缓存被写满是不可避免的。即使你精挑细选,确定了缓存容量,还是要面对缓存写满时的替换操作。缓存替换需要解决两个问题:决定淘汰哪些数据,如何处理那些被淘汰的数据。
接下来我们就来学习下Redis 中的数据淘汰策略。
Redis 缓存有哪些淘汰策略?
Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略。我们可以按照是否会进行数据淘汰把它们分成两类:
不进行数据淘汰的策略,只有 noeviction 这一种。
会进行淘汰的 7 种其他策略。
会进行淘汰的 7 种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:
在设置了过期时间的数据中进行淘汰,包括 volatile-random、volatile-ttl、volatile-lru、volatile-lfuRedis 4.0 后新增)四种。
在所有数据范围内进行淘汰,包括 allkeys-lru、allkeys-random、allkeys-lfuRedis 4.0 后新增)三种。
我把这 8 种策略的分类,画到了一张图里:
下面我就来具体解释下各个策略。
默认情况下Redis 在使用的内存空间超过 maxmemory 值时,并不会淘汰数据,也就是设定的 noeviction 策略。对应到 Redis 缓存也就是指一旦缓存被写满了再有写请求来时Redis 不再提供服务而是直接返回错误。Redis 用作缓存时,实际的数据集通常都是大于缓存容量的,总会有新的数据要写入缓存,这个策略本身不淘汰数据,也就不会腾出新的缓存空间,我们不把它用在 Redis 缓存中。
我们再分析下 volatile-random、volatile-ttl、volatile-lru 和 volatile-lfu 这四种淘汰策略。它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。也正因为此,即使缓存没有写满,这些数据如果过期了,也会被删除。
例如,我们使用 EXPIRE 命令对一批键值对设置了过期时间后,无论是这些键值对的过期时间是快到了,还是 Redis 的内存使用量达到了 maxmemory 阈值Redis 都会进一步按照 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略的具体筛选规则进行淘汰。
volatile-ttl 在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
volatile-random 就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
volatile-lru 会使用 LRU 算法筛选设置了过期时间的键值对。
volatile-lfu 会使用 LFU 算法选择设置了过期时间的键值对。
可以看到volatile-ttl 和 volatile-random 筛选规则比较简单,而 volatile-lru 因为涉及了 LRU 算法,所以我会在分析 allkeys-lru 策略时再详细解释。volatile-lfu 使用了 LFU 算法,我会在第 27 讲中具体解释,现在你只需要知道,它是在 LRU 算法的基础上,同时考虑了数据的访问时效性和数据的访问次数,可以看作是对淘汰策略的优化。
相对于 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略淘汰的是设置了过期时间的数据allkeys-lru、allkeys-random、allkeys-lfu 这三种淘汰策略的备选淘汰数据范围,就扩大到了所有键值对,无论这些键值对是否设置了过期时间。它们筛选数据进行淘汰的规则是:
allkeys-random 策略,从所有键值对中随机选择并删除数据;
allkeys-lru 策略,使用 LRU 算法在所有数据中进行筛选。
allkeys-lfu 策略,使用 LFU 算法在所有数据中进行筛选。
这也就是说,如果一个键值对被删除策略选中了,即使它的过期时间还没到,也需要被删除。当然,如果它的过期时间到了但未被策略选中,同样也会被删除。
接下来,我们就看看 volatile-lru 和 allkeys-lru 策略都用到的 LRU 算法吧。LRU 算法工作机制并不复杂,我们一起学习下。
LRU 算法的全称是 Least Recently Used从名字上就可以看出这是按照最近最少使用的原则来筛选数据最不常用的数据会被筛选出来而最近频繁使用的数据会留在缓存中。
那具体是怎么筛选的呢LRU 会把所有的数据组织成一个链表,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。我们看一个例子。
我们现在有数据 6、3、9、20、5。如果数据 20 和 3 被先后访问,它们都会从现有的链表位置移到 MRU 端而链表中在它们之前的数据则相应地往后移一位。因为LRU 算法选择删除数据时,都是从 LRU 端开始,所以把刚刚被访问的数据移到 MRU 端,就可以让它们尽可能地留在缓存中。
如果有一个新数据 15 要被写入缓存但此时已经没有缓存空间了也就是链表没有空余位置了那么LRU 算法做两件事:
数据 15 是刚被访问的,所以它会被放到 MRU 端;
算法把 LRU 端的数据 5 从缓存中删除,相应的链表中就没有数据 5 的记录了。
其实LRU 算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在 MRU 端;长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到 LRU 端,在缓存满时,就优先删除它。
不过LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
所以,在 Redis 中LRU 算法被做了简化以减轻数据淘汰对缓存性能的影响。具体来说Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录。然后Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据把它们作为一个候选集合。接下来Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去。
Redis 提供了一个配置参数 maxmemory-samples这个参数就是 Redis 选出的数据个数 N。例如我们执行如下命令可以让 Redis 选出 100 个数据作为候选数据集:
CONFIG SET maxmemory-samples 100
当需要再次淘汰数据时Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samplesRedis 就把候选数据集中 lru 字段值最小的数据淘汰出去。
这样一来Redis 缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。
好了,到这里,我们就学完了除了使用 LFU 算法以外的 5 种缓存淘汰策略,我再给你三个使用建议。
优先使用 allkeys-lru 策略。这样,可以充分利用 LRU 这一经典缓存算法的优势,把最近最常访问的数据留在缓存中,提升应用的访问性能。如果你的业务数据中有明显的冷热数据区分,我建议你使用 allkeys-lru 策略。
如果业务应用中的数据访问频率相差不大,没有明显的冷热数据区分,建议使用 allkeys-random 策略,随机选择淘汰的数据就行。
如果你的业务中有置顶的需求,比如置顶新闻、置顶视频,那么,可以使用 volatile-lru 策略,同时不给这些置顶数据设置过期时间。这样一来,这些需要置顶的数据一直不会被删除,而其他数据会在过期时根据 LRU 规则进行筛选。
一旦被淘汰的数据被选定后Redis 怎么处理这些数据呢?这就要说到缓存替换时的具体操作了。
如何处理被淘汰的数据?
一般来说,一旦被淘汰的数据选定后,如果这个数据是干净数据,那么我们就直接删除;如果这个数据是脏数据,我们需要把它写回数据库,如下图所示:
那怎么判断一个数据到底是干净的还是脏的呢?
干净数据和脏数据的区别就在于,和最初从后端数据库里读取时的值相比,有没有被修改过。干净数据一直没有被修改,所以后端数据库里的数据也是最新值。在替换时,它可以被直接删除。
而脏数据就是曾经被修改过的,已经和后端数据库中保存的数据不一致了。此时,如果不把脏数据写回到数据库中,这个数据的最新值就丢失了,就会影响应用的正常使用。
这么一来,缓存替换既腾出了缓存空间,用来缓存新的数据,同时,将脏数据写回数据库,也保证了最新数据不会丢失。
不过,对于 Redis 来说它决定了被淘汰的数据后会把它们删除。即使淘汰的数据是脏数据Redis 也不会把它们写回数据库。所以,我们在使用 Redis 缓存时,如果数据被修改了,需要在数据修改时就将它写回数据库。否则,这个脏数据被淘汰时,会被 Redis 删除,而数据库里也没有最新的数据了。
小结
在这节课上,我围绕着“缓存满了该怎么办”这一问题,向你介绍了缓存替换时的数据淘汰策略,以及被淘汰数据的处理方法。
Redis 4.0 版本以后一共提供了 8 种数据淘汰策略,从淘汰数据的候选集范围来看,我们有两种候选范围:一种是所有数据都是候选集,一种是设置了过期时间的数据是候选集。另外,无论是面向哪种候选数据集进行淘汰数据选择,我们都有三种策略,分别是随机选择,根据 LRU 算法选择,以及根据 LFU 算法选择。当然,当面向设置了过期时间的数据集选择淘汰数据时,我们还可以根据数据离过期时间的远近来决定。
一般来说,缓存系统对于选定的被淘汰数据,会根据其是干净数据还是脏数据,选择直接删除还是写回数据库。但是,在 Redis 中,被淘汰数据无论干净与否都会被删除,所以,这是我们在使用 Redis 缓存时要特别注意的:当数据修改成为脏数据时,需要在数据库中也把数据修改过来。
选择哪种缓存策略是值得我们多加琢磨的,它在筛选数据方面是否能筛选出可能被再次访问的数据,直接决定了缓存效率的高与低。
很简单的一个对比,如果我们使用随机策略,刚筛选出来的要被删除的数据可能正好又被访问了,此时应用就只能花费几毫秒从数据库中读取数据了。而如果使用 LRU 策略,被筛选出来的数据往往是经过时间验证了,如果在一段时间内一直没有访问,本身被再次访问的概率也很低了。
所以,我给你的建议是,先根据是否有始终会被频繁访问的数据(例如置顶消息),来选择淘汰数据的候选集,也就是决定是针对所有数据进行淘汰,还是针对设置了过期时间的数据进行淘汰。候选数据集范围选定后,建议优先使用 LRU 算法也就是allkeys-lru 或 volatile-lru 策略。
当然,设置缓存容量的大小也很重要,我的建议是:结合实际应用的数据总量、热数据的体量,以及成本预算,把缓存空间大小设置在总数据量的 15% 到 30% 这个区间就可以。
每课一问
按照惯例,我给你提一个小问题。这节课,我向你介绍了 Redis 缓存在应对脏数据时需要在数据修改的同时也把它写回数据库针对我们上节课介绍的缓存读写模式只读缓存以及读写缓存中的两种写回策略请你思考下Redis 缓存对应哪一种或哪几种模式?
欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或 / 同事。我们下节课见。