928 lines
16 KiB
Markdown
928 lines
16 KiB
Markdown
|
||
|
||
因收到Google相关通知,网站将会择期关闭。相关通知内容
|
||
|
||
|
||
11 聚合:聚合查询之Metric聚合详解
|
||
如何理解metric聚合
|
||
|
||
|
||
在[bucket聚合]中,我画了一张图辅助你构筑体系,那么metric聚合又如何理解呢?
|
||
|
||
|
||
如果你直接去看官方文档,大概也有十几种:
|
||
|
||
|
||
|
||
|
||
那么metric聚合又如何理解呢?我认为从两个角度:
|
||
|
||
|
||
|
||
从分类看:Metric聚合分析分为单值分析和多值分析两类
|
||
从功能看:根据具体的应用场景设计了一些分析api, 比如地理位置,百分数等等
|
||
|
||
|
||
|
||
融合上述两个方面,我们可以梳理出大致的一个mind图:
|
||
|
||
|
||
|
||
|
||
|
||
单值分析
|
||
只输出一个分析结果
|
||
|
||
|
||
|
||
标准stat型
|
||
|
||
|
||
avg 平均值
|
||
max 最大值
|
||
min 最小值
|
||
sum 和
|
||
value_count 数量
|
||
|
||
其它类型
|
||
|
||
|
||
cardinality 基数(distinct去重)
|
||
weighted_avg 带权重的avg
|
||
median_absolute_deviation 中位值
|
||
|
||
|
||
|
||
|
||
|
||
多值分析
|
||
单值之外的
|
||
|
||
|
||
|
||
stats型
|
||
|
||
|
||
stats 包含avg,max,min,sum和count
|
||
matrix_stats 针对矩阵模型
|
||
extended_stats
|
||
string_stats 针对字符串
|
||
|
||
百分数型
|
||
|
||
|
||
percentiles 百分数范围
|
||
percentile_ranks 百分数排行
|
||
|
||
地理位置型
|
||
|
||
|
||
geo_bounds Geo bounds
|
||
geo_centroid Geo-centroid
|
||
geo_line Geo-Line
|
||
|
||
Top型
|
||
|
||
|
||
top_hits 分桶后的top hits
|
||
top_metrics
|
||
|
||
|
||
|
||
|
||
|
||
通过上述列表(我就不画图了),我们构筑的体系是基于分类和功能,而不是具体的项(比如avg,percentiles…);这是不同的认知维度: 具体的项是碎片化,分类和功能这种是你需要构筑的体系。@pdai
|
||
|
||
|
||
单值分析: 标准stat类型
|
||
|
||
avg 平均值
|
||
|
||
计算班级的平均分
|
||
|
||
POST /exams/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"avg_grade": { "avg": { "field": "grade" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"avg_grade": {
|
||
"value": 75.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
max 最大值
|
||
|
||
计算销售最高价
|
||
|
||
POST /sales/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"max_price": { "max": { "field": "price" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"max_price": {
|
||
"value": 200.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
min 最小值
|
||
|
||
计算销售最低价
|
||
|
||
POST /sales/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"min_price": { "min": { "field": "price" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
|
||
"aggregations": {
|
||
"min_price": {
|
||
"value": 10.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
sum 和
|
||
|
||
计算销售总价
|
||
|
||
POST /sales/_search?size=0
|
||
{
|
||
"query": {
|
||
"constant_score": {
|
||
"filter": {
|
||
"match": { "type": "hat" }
|
||
}
|
||
}
|
||
},
|
||
"aggs": {
|
||
"hat_prices": { "sum": { "field": "price" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"hat_prices": {
|
||
"value": 450.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
value_count 数量
|
||
|
||
销售数量统计
|
||
|
||
POST /sales/_search?size=0
|
||
{
|
||
"aggs" : {
|
||
"types_count" : { "value_count" : { "field" : "type" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"types_count": {
|
||
"value": 7
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
单值分析: 其它类型
|
||
|
||
weighted_avg 带权重的avg
|
||
|
||
POST /exams/_search
|
||
{
|
||
"size": 0,
|
||
"aggs": {
|
||
"weighted_grade": {
|
||
"weighted_avg": {
|
||
"value": {
|
||
"field": "grade"
|
||
},
|
||
"weight": {
|
||
"field": "weight"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"weighted_grade": {
|
||
"value": 70.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
cardinality 基数(distinct去重)
|
||
|
||
POST /sales/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"type_count": {
|
||
"cardinality": {
|
||
"field": "type"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"type_count": {
|
||
"value": 3
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
median_absolute_deviation 中位值
|
||
|
||
GET reviews/_search
|
||
{
|
||
"size": 0,
|
||
"aggs": {
|
||
"review_average": {
|
||
"avg": {
|
||
"field": "rating"
|
||
}
|
||
},
|
||
"review_variability": {
|
||
"median_absolute_deviation": {
|
||
"field": "rating"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"review_average": {
|
||
"value": 3.0
|
||
},
|
||
"review_variability": {
|
||
"value": 2.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
非单值分析:stats型
|
||
|
||
stats 包含avg,max,min,sum和count
|
||
|
||
POST /exams/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"grades_stats": { "stats": { "field": "grade" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
|
||
"aggregations": {
|
||
"grades_stats": {
|
||
"count": 2,
|
||
"min": 50.0,
|
||
"max": 100.0,
|
||
"avg": 75.0,
|
||
"sum": 150.0
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
matrix_stats 针对矩阵模型
|
||
|
||
以下示例说明了使用矩阵统计量来描述收入与贫困之间的关系。
|
||
|
||
GET /_search
|
||
{
|
||
"aggs": {
|
||
"statistics": {
|
||
"matrix_stats": {
|
||
"fields": [ "poverty", "income" ]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"statistics": {
|
||
"doc_count": 50,
|
||
"fields": [ {
|
||
"name": "income",
|
||
"count": 50,
|
||
"mean": 51985.1,
|
||
"variance": 7.383377037755103E7,
|
||
"skewness": 0.5595114003506483,
|
||
"kurtosis": 2.5692365287787124,
|
||
"covariance": {
|
||
"income": 7.383377037755103E7,
|
||
"poverty": -21093.65836734694
|
||
},
|
||
"correlation": {
|
||
"income": 1.0,
|
||
"poverty": -0.8352655256272504
|
||
}
|
||
}, {
|
||
"name": "poverty",
|
||
"count": 50,
|
||
"mean": 12.732000000000001,
|
||
"variance": 8.637730612244896,
|
||
"skewness": 0.4516049811903419,
|
||
"kurtosis": 2.8615929677997767,
|
||
"covariance": {
|
||
"income": -21093.65836734694,
|
||
"poverty": 8.637730612244896
|
||
},
|
||
"correlation": {
|
||
"income": -0.8352655256272504,
|
||
"poverty": 1.0
|
||
}
|
||
} ]
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
extended_stats
|
||
|
||
根据从汇总文档中提取的数值计算统计信息。
|
||
|
||
GET /exams/_search
|
||
{
|
||
"size": 0,
|
||
"aggs": {
|
||
"grades_stats": { "extended_stats": { "field": "grade" } }
|
||
}
|
||
}
|
||
|
||
|
||
上面的汇总计算了所有文档的成绩统计信息。聚合类型为extended_stats,并且字段设置定义将在其上计算统计信息的文档的数字字段。
|
||
|
||
{
|
||
...
|
||
|
||
"aggregations": {
|
||
"grades_stats": {
|
||
"count": 2,
|
||
"min": 50.0,
|
||
"max": 100.0,
|
||
"avg": 75.0,
|
||
"sum": 150.0,
|
||
"sum_of_squares": 12500.0,
|
||
"variance": 625.0,
|
||
"variance_population": 625.0,
|
||
"variance_sampling": 1250.0,
|
||
"std_deviation": 25.0,
|
||
"std_deviation_population": 25.0,
|
||
"std_deviation_sampling": 35.35533905932738,
|
||
"std_deviation_bounds": {
|
||
"upper": 125.0,
|
||
"lower": 25.0,
|
||
"upper_population": 125.0,
|
||
"lower_population": 25.0,
|
||
"upper_sampling": 145.71067811865476,
|
||
"lower_sampling": 4.289321881345245
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
string_stats 针对字符串
|
||
|
||
用于计算从聚合文档中提取的字符串值的统计信息。这些值可以从特定的关键字字段中检索。
|
||
|
||
POST /my-index-000001/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"message_stats": { "string_stats": { "field": "message.keyword" } }
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
|
||
"aggregations": {
|
||
"message_stats": {
|
||
"count": 5,
|
||
"min_length": 24,
|
||
"max_length": 30,
|
||
"avg_length": 28.8,
|
||
"entropy": 3.94617750050791
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
非单值分析:百分数型
|
||
|
||
percentiles 百分数范围
|
||
|
||
针对从聚合文档中提取的数值计算一个或多个百分位数。
|
||
|
||
GET latency/_search
|
||
{
|
||
"size": 0,
|
||
"aggs": {
|
||
"load_time_outlier": {
|
||
"percentiles": {
|
||
"field": "load_time"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
默认情况下,百分位度量标准将生成一定范围的百分位:[1,5,25,50,75,95,99]。
|
||
|
||
{
|
||
...
|
||
|
||
"aggregations": {
|
||
"load_time_outlier": {
|
||
"values": {
|
||
"1.0": 5.0,
|
||
"5.0": 25.0,
|
||
"25.0": 165.0,
|
||
"50.0": 445.0,
|
||
"75.0": 725.0,
|
||
"95.0": 945.0,
|
||
"99.0": 985.0
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
percentile_ranks 百分数排行
|
||
|
||
根据从汇总文档中提取的数值计算一个或多个百分位等级。
|
||
|
||
GET latency/_search
|
||
{
|
||
"size": 0,
|
||
"aggs": {
|
||
"load_time_ranks": {
|
||
"percentile_ranks": {
|
||
"field": "load_time",
|
||
"values": [ 500, 600 ]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
|
||
"aggregations": {
|
||
"load_time_ranks": {
|
||
"values": {
|
||
"500.0": 90.01,
|
||
"600.0": 100.0
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
上述结果表示90.01%的页面加载在500ms内完成,而100%的页面加载在600ms内完成。
|
||
|
||
非单值分析:地理位置型
|
||
|
||
geo_bounds Geo bounds
|
||
|
||
PUT /museums
|
||
{
|
||
"mappings": {
|
||
"properties": {
|
||
"location": {
|
||
"type": "geo_point"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
POST /museums/_bulk?refresh
|
||
{"index":{"_id":1}}
|
||
{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}
|
||
{"index":{"_id":2}}
|
||
{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}
|
||
{"index":{"_id":3}}
|
||
{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}
|
||
{"index":{"_id":4}}
|
||
{"location": "51.222900,4.405200", "name": "Letterenhuis"}
|
||
{"index":{"_id":5}}
|
||
{"location": "48.861111,2.336389", "name": "Musée du Louvre"}
|
||
{"index":{"_id":6}}
|
||
{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}
|
||
|
||
POST /museums/_search?size=0
|
||
{
|
||
"query": {
|
||
"match": { "name": "musée" }
|
||
},
|
||
"aggs": {
|
||
"viewport": {
|
||
"geo_bounds": {
|
||
"field": "location",
|
||
"wrap_longitude": true
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
上面的汇总展示了如何针对具有商店业务类型的所有文档计算位置字段的边界框
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"viewport": {
|
||
"bounds": {
|
||
"top_left": {
|
||
"lat": 48.86111099738628,
|
||
"lon": 2.3269999679178
|
||
},
|
||
"bottom_right": {
|
||
"lat": 48.85999997612089,
|
||
"lon": 2.3363889567553997
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
geo_centroid Geo-centroid
|
||
|
||
PUT /museums
|
||
{
|
||
"mappings": {
|
||
"properties": {
|
||
"location": {
|
||
"type": "geo_point"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
POST /museums/_bulk?refresh
|
||
{"index":{"_id":1}}
|
||
{"location": "52.374081,4.912350", "city": "Amsterdam", "name": "NEMO Science Museum"}
|
||
{"index":{"_id":2}}
|
||
{"location": "52.369219,4.901618", "city": "Amsterdam", "name": "Museum Het Rembrandthuis"}
|
||
{"index":{"_id":3}}
|
||
{"location": "52.371667,4.914722", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum"}
|
||
{"index":{"_id":4}}
|
||
{"location": "51.222900,4.405200", "city": "Antwerp", "name": "Letterenhuis"}
|
||
{"index":{"_id":5}}
|
||
{"location": "48.861111,2.336389", "city": "Paris", "name": "Musée du Louvre"}
|
||
{"index":{"_id":6}}
|
||
{"location": "48.860000,2.327000", "city": "Paris", "name": "Musée d'Orsay"}
|
||
|
||
POST /museums/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"centroid": {
|
||
"geo_centroid": {
|
||
"field": "location"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
上面的汇总显示了如何针对所有具有犯罪类型的盗窃文件计算位置字段的质心。
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"centroid": {
|
||
"location": {
|
||
"lat": 51.00982965203002,
|
||
"lon": 3.9662131341174245
|
||
},
|
||
"count": 6
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
geo_line Geo-Line
|
||
|
||
PUT test
|
||
{
|
||
"mappings": {
|
||
"dynamic": "strict",
|
||
"_source": {
|
||
"enabled": false
|
||
},
|
||
"properties": {
|
||
"my_location": {
|
||
"type": "geo_point"
|
||
},
|
||
"group": {
|
||
"type": "keyword"
|
||
},
|
||
"@timestamp": {
|
||
"type": "date"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
POST /test/_bulk?refresh
|
||
{"index": {}}
|
||
{"my_location": {"lat":37.3450570, "lon": -122.0499820}, "@timestamp": "2013-09-06T16:00:36"}
|
||
{"index": {}}
|
||
{"my_location": {"lat": 37.3451320, "lon": -122.0499820}, "@timestamp": "2013-09-06T16:00:37Z"}
|
||
{"index": {}}
|
||
{"my_location": {"lat": 37.349283, "lon": -122.0505010}, "@timestamp": "2013-09-06T16:00:37Z"}
|
||
|
||
POST /test/_search?filter_path=aggregations
|
||
{
|
||
"aggs": {
|
||
"line": {
|
||
"geo_line": {
|
||
"point": {"field": "my_location"},
|
||
"sort": {"field": "@timestamp"}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
将存储桶中的所有geo_point值聚合到由所选排序字段排序的LineString中。
|
||
|
||
{
|
||
"aggregations": {
|
||
"line": {
|
||
"type" : "Feature",
|
||
"geometry" : {
|
||
"type" : "LineString",
|
||
"coordinates" : [
|
||
[
|
||
-122.049982,
|
||
37.345057
|
||
],
|
||
[
|
||
-122.050501,
|
||
37.349283
|
||
],
|
||
[
|
||
-122.049982,
|
||
37.345132
|
||
]
|
||
]
|
||
},
|
||
"properties" : {
|
||
"complete" : true
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
非单值分析:Top型
|
||
|
||
top_hits 分桶后的top hits
|
||
|
||
POST /sales/_search?size=0
|
||
{
|
||
"aggs": {
|
||
"top_tags": {
|
||
"terms": {
|
||
"field": "type",
|
||
"size": 3
|
||
},
|
||
"aggs": {
|
||
"top_sales_hits": {
|
||
"top_hits": {
|
||
"sort": [
|
||
{
|
||
"date": {
|
||
"order": "desc"
|
||
}
|
||
}
|
||
],
|
||
"_source": {
|
||
"includes": [ "date", "price" ]
|
||
},
|
||
"size": 1
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
...
|
||
"aggregations": {
|
||
"top_tags": {
|
||
"doc_count_error_upper_bound": 0,
|
||
"sum_other_doc_count": 0,
|
||
"buckets": [
|
||
{
|
||
"key": "hat",
|
||
"doc_count": 3,
|
||
"top_sales_hits": {
|
||
"hits": {
|
||
"total" : {
|
||
"value": 3,
|
||
"relation": "eq"
|
||
},
|
||
"max_score": null,
|
||
"hits": [
|
||
{
|
||
"_index": "sales",
|
||
"_type": "_doc",
|
||
"_id": "AVnNBmauCQpcRyxw6ChK",
|
||
"_source": {
|
||
"date": "2015/03/01 00:00:00",
|
||
"price": 200
|
||
},
|
||
"sort": [
|
||
1425168000000
|
||
],
|
||
"_score": null
|
||
}
|
||
]
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"key": "t-shirt",
|
||
"doc_count": 3,
|
||
"top_sales_hits": {
|
||
"hits": {
|
||
"total" : {
|
||
"value": 3,
|
||
"relation": "eq"
|
||
},
|
||
"max_score": null,
|
||
"hits": [
|
||
{
|
||
"_index": "sales",
|
||
"_type": "_doc",
|
||
"_id": "AVnNBmauCQpcRyxw6ChL",
|
||
"_source": {
|
||
"date": "2015/03/01 00:00:00",
|
||
"price": 175
|
||
},
|
||
"sort": [
|
||
1425168000000
|
||
],
|
||
"_score": null
|
||
}
|
||
]
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"key": "bag",
|
||
"doc_count": 1,
|
||
"top_sales_hits": {
|
||
"hits": {
|
||
"total" : {
|
||
"value": 1,
|
||
"relation": "eq"
|
||
},
|
||
"max_score": null,
|
||
"hits": [
|
||
{
|
||
"_index": "sales",
|
||
"_type": "_doc",
|
||
"_id": "AVnNBmatCQpcRyxw6ChH",
|
||
"_source": {
|
||
"date": "2015/01/01 00:00:00",
|
||
"price": 150
|
||
},
|
||
"sort": [
|
||
1420070400000
|
||
],
|
||
"_score": null
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
top_metrics
|
||
|
||
POST /test/_bulk?refresh
|
||
{"index": {}}
|
||
{"s": 1, "m": 3.1415}
|
||
{"index": {}}
|
||
{"s": 2, "m": 1.0}
|
||
{"index": {}}
|
||
{"s": 3, "m": 2.71828}
|
||
POST /test/_search?filter_path=aggregations
|
||
{
|
||
"aggs": {
|
||
"tm": {
|
||
"top_metrics": {
|
||
"metrics": {"field": "m"},
|
||
"sort": {"s": "desc"}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
返回
|
||
|
||
{
|
||
"aggregations": {
|
||
"tm": {
|
||
"top": [ {"sort": [3], "metrics": {"m": 2.718280076980591 } } ]
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
参考文章
|
||
|
||
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics.html
|
||
|
||
|
||
|
||
|