learn-tech/专栏/Redis核心技术与实战/05内存快照:宕机后,Redis如何实现快速恢复?.md
2024-10-16 06:37:41 +08:00

142 lines
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

因收到Google相关通知网站将会择期关闭。相关通知内容
05 内存快照宕机后Redis如何实现快速恢复
上节课,我们学习了 Redis 避免数据丢失的 AOF 方法。这个方法的好处,是每次执行只需要记录操作命令,需要持久化的数据量不大。一般而言,只要你采用的不是 always 的持久化策略,就不会对性能造成太大影响。
但是,也正因为记录的是操作命令,而不是实际的数据,所以,用 AOF 方法进行故障恢复的时候需要逐一把操作日志都执行一遍。如果操作日志非常多Redis 就会恢复得很缓慢,影响到正常使用。这当然不是理想的结果。那么,还有没有既可以保证可靠性,还能在宕机时实现快速恢复的其他方法呢?
当然有了,这就是我们今天要一起学习的另一种持久化方法:内存快照。所谓内存快照,就是指内存中的数据在某一个时刻的状态记录。这就类似于照片,当你给朋友拍照时,一张照片就能把朋友一瞬间的形象完全记下来。
对 Redis 来说,它实现类似照片记录效果的方式,就是把某一时刻的状态以文件的形式写到磁盘上,也就是快照。这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。这个快照文件就称为 RDB 文件其中RDB 就是 Redis DataBase 的缩写。
和 AOF 相比RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。听起来好像很不错,但内存快照也并不是最优选项。为什么这么说呢?
我们还要考虑两个关键问题:
对哪些数据做快照?这关系到快照的执行效率问题;
做快照时,数据还能被增删改吗?这关系到 Redis 是否被阻塞,能否同时正常处理请求。
这么说可能你还不太好理解,我还是拿拍照片来举例子。我们在拍照时,通常要关注两个问题:
如何取景?也就是说,我们打算把哪些人、哪些物拍到照片中;
在按快门前,要记着提醒朋友不要乱动,否则拍出来的照片就模糊了。
你看,这两个问题是不是非常重要呢?那么,接下来,我们就来具体地聊一聊。先说“取景”问题,也就是我们对哪些数据做快照。
给哪些内存数据做快照?
Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,这就类似于给 100 个人拍合影,把每一个人都拍进照片里。这样做的好处是,一次性记录了所有数据,一个都不少。
当你给一个人拍照时,只用协调一个人就够了,但是,拍 100 人的大合影,却需要协调 100 个人的位置、状态等等这当然会更费时费力。同样给内存的全量数据做快照把它们全部写入磁盘也会花费很多时间。而且全量数据越多RDB 文件就越大,往磁盘上写数据的时间开销就越大。
对于 Redis 而言,它的单线程模型就决定了,我们要尽量避免所有会阻塞主线程的操作,所以,针对任何操作,我们都会提一个灵魂之问:“它会阻塞主线程吗?”RDB 文件的生成是否会阻塞主线程,这就关系到是否会降低 Redis 的性能。
Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave。
save在主线程中执行会导致阻塞
bgsave创建一个子进程专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。
好了,这个时候,我们就可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。
接下来,我们要关注的问题就是,在对内存数据做快照时,这些数据还能“动”吗? 也就是说,这些数据还能被修改吗? 这个问题非常重要,这是因为,如果数据能被修改,那就意味着 Redis 还能正常处理写操作。否则,所有写操作都得等到快照完了才能执行,性能一下子就降低了。
快照时数据能修改吗?
在给别人拍照时,一旦对方动了,那么这张照片就拍糊了,我们就需要重拍,所以我们当然希望对方保持不动。对于内存快照而言,我们也不希望数据“动”。
举个例子。我们在时刻 t 给内存做快照,假设内存数据量是 4GB磁盘的写入带宽是 0.2GB/s简单来说至少需要 20s4/0.2 = 20才能做完。如果在时刻 t+5s 时,一个还没有被写入磁盘的内存数据 A被修改成了 A那么就会破坏快照的完整性因为 A不是时刻 t 时的状态。因此,和拍照类似,我们在做快照时也不希望数据“动”,也就是不能被修改。
但是,如果快照执行期间数据不能被修改,是会有潜在问题的。对于刚刚的例子来说,在做快照的 20s 时间里,如果这 4GB 的数据都不能被修改Redis 就不能处理对这些数据的写操作,那无疑就会给业务服务造成巨大的影响。
你可能会想到,可以用 bgsave 避免阻塞啊。这里我就要说到一个常见的误区了,避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。
为了快照而暂停写操作肯定是不能接受的。所以这个时候Redis 就会借助操作系统提供的写时复制技术Copy-On-Write, COW在执行快照的同时正常处理写操作。
简单来说bgsave 子进程是由主线程 fork 生成的可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。
此时,如果主线程对这些数据也都是读操作(例如图中的键值对 A那么主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C那么这块数据就会被复制一份生成该数据的副本键值对 C。然后主线程在这个数据副本上进行修改。同时bgsave 子进程可以继续把原来的数据(键值对 C写入 RDB 文件。
写时复制机制保证快照期间数据可修改
这既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。
到这里我们就解决了对“哪些数据做快照”以及“做快照时数据能否修改”这两大问题Redis 会使用 bgsave 对当前内存中的所有数据做快照,这个操作是子进程在后台完成的,这就允许主线程同时可以修改数据。
现在,我们再来看另一个问题:多久做一次快照?我们在拍照的时候,还有项技术叫“连拍”,可以记录人或物连续多个瞬间的状态。那么,快照也适合“连拍”吗?
可以每秒做一次快照吗?
对于快照来说,所谓“连拍”就是指连续地做快照。这样一来,快照的间隔时间变得很短,即使某一时刻发生宕机了,因为上一时刻快照刚执行,丢失的数据也不会太多。但是,这其中的快照间隔时间就很关键了。
如下图所示,我们先在 T0 时刻做了一次快照,然后又在 T0+t 时刻做了一次快照,在这期间,数据块 5 和 9 被修改了。如果在 t 这段时间内,机器宕机了,那么,只能按照 T0 时刻的快照进行恢复。此时,数据块 5 和 9 的修改值因为没有快照记录,就无法恢复了。
快照机制下的数据丢失
所以要想尽可能恢复数据t 值就要尽可能小t 越小就越像“连拍”。那么t 值可以小到什么程度呢,比如说是不是可以每秒做一次快照?毕竟,每次快照都是由 bgsave 子进程在后台执行,也不会阻塞主线程。
这种想法其实是错误的。虽然 bgsave 执行时不阻塞主线程,但是,如果频繁地执行全量快照,也会带来两方面的开销。
一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环。
另一方面bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然子进程在创建后不会再阻塞主线程但是fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长。如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了(所以,在 Redis 中如果有一个 bgsave 在运行,就不会再启动第二个 bgsave 子进程)。那么,有什么其他好方法吗?
此时,我们可以做增量快照,所谓增量快照,就是指,做了一次全量快照后,后续的快照只对修改的数据进行快照记录,这样可以避免每次全量快照的开销。
在第一次做完全量快照后T1 和 T2 时刻如果再做快照,我们只需要将被修改的数据写入快照文件就行。但是,这么做的前提是,我们需要记住哪些数据被修改了。你可不要小瞧这个“记住”功能,它需要我们使用额外的元数据信息去记录哪些数据被修改了,这会带来额外的空间开销问题。如下图所示:
增量快照示意图
如果我们对每一个键值对的修改,都做个记录,那么,如果有 1 万个被修改的键值对,我们就需要有 1 万条额外的记录。而且,有的时候,键值对非常小,比如只有 32 字节,而记录它被修改的元数据信息,可能就需要 8 字节,这样的画,为了“记住”修改,引入的额外空间开销比较大。这对于内存资源宝贵的 Redis 来说,有些得不偿失。
到这里,你可以发现,虽然跟 AOF 相比,快照的恢复速度快,但是,快照的频率不好把握,如果频率太低,两次快照间一旦宕机,就可能有比较多的数据丢失。如果频率太高,又会产生额外开销,那么,还有什么方法既能利用 RDB 的快速恢复,又能以较小的开销做到尽量少丢数据呢?
Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。
这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。
如下图所示T1 和 T2 时刻的修改,用 AOF 日志记录,等到第二次做全量快照时,就可以清空 AOF 日志,因为此时的修改都已经记录到快照中了,恢复时就不再用日志了。
内存快照和AOF混合使用
这个方法既能享受到 RDB 文件快速恢复的好处,又能享受到 AOF 只记录操作命令的简单优势,颇有点“鱼和熊掌可以兼得”的感觉,建议你在实践中用起来。
小结
这节课,我们学习了 Redis 用于避免数据丢失的内存快照方法。这个方法的优势在于,可以快速恢复数据库,也就是只需要把 RDB 文件直接读入内存,这就避免了 AOF 需要顺序、逐一重新执行操作命令带来的低效性能问题。
不过内存快照也有它的局限性。它拍的是一张内存的“大合影”不可避免地会耗时耗力。虽然Redis 设计了 bgsave 和写时复制方式,尽可能减少了内存快照对正常读写的影响,但是,频繁快照仍然是不太能接受的。而混合使用 RDB 和 AOF正好可以取两者之长避两者之短以较小的性能开销保证数据可靠性和性能。
最后,关于 AOF 和 RDB 的选择问题,我想再给你提三点建议:
数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择;
如果允许分钟级别的数据丢失,可以只使用 RDB
如果只用 AOF优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。
每课一问
我曾碰到过这么一个场景:我们使用一个 2 核 CPU、4GB 内存、500GB 磁盘的云主机运行 RedisRedis 数据库的数据量大小差不多是 2GB我们使用了 RDB 做持久化保证。当时 Redis 的运行负载以修改操作为主,写读比例差不多在 8:2 左右,也就是说,如果有 100 个请求80 个请求执行的是修改操作。你觉得,在这个场景下,用 RDB 做持久化有什么风险吗?你能帮着一起分析分析吗?
到这里,关于持久化我们就讲完了,这块儿内容是熟练掌握 Redis 的基础,建议你一定好好学习下这两节课。如果你觉得有收获,希望你能帮我分享给更多的人,帮助更多人解决持久化的问题。