12 KiB
因收到Google相关通知,网站将会择期关闭。相关通知内容
41 案例分析(四):高性能数据库连接池HiKariCP
实际工作中,我们总会难免和数据库打交道;只要和数据库打交道,就免不了使用数据库连接池。业界知名的数据库连接池有不少,例如c3p0、DBCP、Tomcat JDBC Connection Pool、Druid等,不过最近最火的是HiKariCP。
HiKariCP号称是业界跑得最快的数据库连接池,这两年发展得顺风顺水,尤其是Springboot 2.0将其作为默认数据库连接池后,江湖一哥的地位已是毋庸置疑了。那它为什么那么快呢?今天咱们就重点聊聊这个话题。
什么是数据库连接池
在详细分析HiKariCP高性能之前,我们有必要先简单介绍一下什么是数据库连接池。本质上,数据库连接池和线程池一样,都属于池化资源,作用都是避免重量级资源的频繁创建和销毁,对于数据库连接池来说,也就是避免数据库连接频繁创建和销毁。如下图所示,服务端会在运行期持有一定数量的数据库连接,当需要执行SQL时,并不是直接创建一个数据库连接,而是从连接池中获取一个;当SQL执行完,也并不是将数据库连接真的关掉,而是将其归还到连接池中。
数据库连接池示意图
在实际工作中,我们都是使用各种持久化框架来完成数据库的增删改查,基本上不会直接和数据库连接池打交道,为了能让你更好地理解数据库连接池的工作原理,下面的示例代码并没有使用任何框架,而是原生地使用HiKariCP。执行数据库操作基本上是一系列规范化的步骤:
通过数据源获取一个数据库连接; 创建Statement; 执行SQL; 通过ResultSet获取SQL执行结果; 释放ResultSet; 释放Statement; 释放数据库连接。
下面的示例代码,通过 ds.getConnection() 获取一个数据库连接时,其实是向数据库连接池申请一个数据库连接,而不是创建一个新的数据库连接。同样,通过 conn.close() 释放一个数据库连接时,也不是直接将连接关闭,而是将连接归还给数据库连接池。
//数据库连接池配置 HikariConfig config = new HikariConfig(); config.setMinimumIdle(1); config.setMaximumPoolSize(2); config.setConnectionTestQuery("SELECT 1"); config.setDataSourceClassName("org.h2.jdbcx.JdbcDataSource"); config.addDataSourceProperty("url", "jdbc:h2:mem:test"); // 创建数据源 DataSource ds = new HikariDataSource(config); Connection conn = null; Statement stmt = null; ResultSet rs = null; try { // 获取数据库连接 conn = ds.getConnection(); // 创建Statement stmt = conn.createStatement(); // 执行SQL rs = stmt.executeQuery("select * from abc"); // 获取结果 while (rs.next()) { int id = rs.getInt(1); ...... } } catch(Exception e) { e.printStackTrace(); } finally { //关闭ResultSet close(rs); //关闭Statement close(stmt); //关闭Connection close(conn); } //关闭资源 void close(AutoCloseable rs) { if (rs != null) { try { rs.close(); } catch (SQLException e) { e.printStackTrace(); } } }
HiKariCP官方网站解释了其性能之所以如此之高的秘密。微观上HiKariCP程序编译出的字节码执行效率更高,站在字节码的角度去优化Java代码,HiKariCP的作者对性能的执着可见一斑,不过遗憾的是他并没有详细解释都做了哪些优化。而宏观上主要是和两个数据结构有关,一个是FastList,另一个是ConcurrentBag。下面我们来看看它们是如何提升HiKariCP的性能的。
FastList解决了哪些性能问题
按照规范步骤,执行完数据库操作之后,需要依次关闭ResultSet、Statement、Connection,但是总有粗心的同学只是关闭了Connection,而忘了关闭ResultSet和Statement。为了解决这种问题,最好的办法是当关闭Connection时,能够自动关闭Statement。为了达到这个目标,Connection就需要跟踪创建的Statement,最简单的办法就是将创建的Statement保存在数组ArrayList里,这样当关闭Connection的时候,就可以依次将数组中的所有Statement关闭。
HiKariCP觉得用ArrayList还是太慢,当通过 conn.createStatement() 创建一个Statement时,需要调用ArrayList的add()方法加入到ArrayList中,这个是没有问题的;但是当通过 stmt.close() 关闭Statement的时候,需要调用 ArrayList的remove()方法来将其从ArrayList中删除,这里是有优化余地的。
假设一个Connection依次创建6个Statement,分别是S1、S2、S3、S4、S5、S6,按照正常的编码习惯,关闭Statement的顺序一般是逆序的,关闭的顺序是:S6、S5、S4、S3、S2、S1,而ArrayList的remove(Object o)方法是顺序遍历查找,逆序删除而顺序查找,这样的查找效率就太慢了。如何优化呢?很简单,优化成逆序查找就可以了。
逆序删除示意图
HiKariCP中的FastList相对于ArrayList的一个优化点就是将 remove(Object element) 方法的查找顺序变成了逆序查找。除此之外,FastList还有另一个优化点,是 get(int index) 方法没有对index参数进行越界检查,HiKariCP能保证不会越界,所以不用每次都进行越界检查。
整体来看,FastList的优化点还是很简单的。下面我们再来聊聊HiKariCP中的另外一个数据结构ConcurrentBag,看看它又是如何提升性能的。
ConcurrentBag解决了哪些性能问题
如果让我们自己来实现一个数据库连接池,最简单的办法就是用两个阻塞队列来实现,一个用于保存空闲数据库连接的队列idle,另一个用于保存忙碌数据库连接的队列busy;获取连接时将空闲的数据库连接从idle队列移动到busy队列,而关闭连接时将数据库连接从busy移动到idle。这种方案将并发问题委托给了阻塞队列,实现简单,但是性能并不是很理想。因为Java SDK中的阻塞队列是用锁实现的,而高并发场景下锁的争用对性能影响很大。
//忙碌队列 BlockingQueue busy; //空闲队列 BlockingQueue idle;
HiKariCP并没有使用Java SDK中的阻塞队列,而是自己实现了一个叫做ConcurrentBag的并发容器。ConcurrentBag的设计最初源自C#,它的一个核心设计是使用ThreadLocal避免部分并发问题,不过HiKariCP中的ConcurrentBag并没有完全参考C#的实现,下面我们来看看它是如何实现的。
ConcurrentBag中最关键的属性有4个,分别是:用于存储所有的数据库连接的共享队列sharedList、线程本地存储threadList、等待数据库连接的线程数waiters以及分配数据库连接的工具handoffQueue。其中,handoffQueue用的是Java SDK提供的SynchronousQueue,SynchronousQueue主要用于线程之间传递数据。
//用于存储所有的数据库连接 CopyOnWriteArrayList sharedList; //线程本地存储中的数据库连接 ThreadLocal<List