Commit Graph

10 Commits

Author SHA1 Message Date
catlog22
920b179440 docs: 更新所有命令描述并重新生成索引文件
- 更新所有69个命令文件的description字段,基于实际功能重新生成详细描述
- 重新生成5个索引文件(all-commands, by-category, by-use-case, essential-commands, command-relationships)
- 移动analyze_commands.py到scripts/目录并完善功能
- 移除临时备份文件

命令描述改进示例:
- workflow:plan: 增加了工具和代理的详细说明(Gemini, action-planning-agent)
- cli:execute: 说明了YOLO权限和多种执行模式
- memory:update-related: 详细说明了批处理策略和工具回退链

索引文件改进:
- usage_scenario从2种扩展到10种(更精细分类)
- command-relationships覆盖所有69个命令
- 区分built-in(内置调用)和sequential(用户顺序执行)关系

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-06 15:11:31 +08:00
catlog22
483ab621bc docs: Replace project-specific examples with generic examples in load-skill-memory 2025-11-03 22:53:41 +08:00
catlog22
6adbe7c1e9 feat: Make skill_name optional with intelligent auto-detection in load-skill-memory
## Major Changes

### Parameter Flexibility
- Changed `<skill_name>` from Required to Optional `[skill_name]`
- Updated argument-hint: `[skill_name] "task intent description"`
- Description: "Activate SKILL package (auto-detect or manual)"

### Auto-Detection Strategy (New Feature)
Added Step 1: Determine SKILL Name (if not provided)
1. **Path Extraction**: Scan task for file paths, extract project names
   - Example: `"D:\projects\my_project\src\auth.py"` → extracts `my_project`
2. **Keyword Matching**: Match task keywords against SKILL descriptions
3. **Validation**: Check if extracted name exists in `.claude/skills/`

### Core Philosophy Update
- Changed from "Manual Activation" → "Flexible Activation"
- Auto-detect from task description/paths OR user explicitly specifies

### Enhanced Documentation
- Parameters section: Added auto-detection explanation and path example
- Task intent description: Now serves dual purpose (auto-detection + scope selection)
- Updated all execution flow steps (Step 1 → Step 2 → Step 3)

### Usage Examples
- **Example 1**: Manual specification (explicit skill_name)
- **Example 2**: Auto-detection from path (NEW)
  - Shows complete auto-detection workflow
  - Path extraction → Validation → Activation

## Benefits
-  **Smarter activation**: System extracts skill name from context
-  **Reduced user effort**: No need to specify obvious skill names
-  **Backward compatible**: Manual specification still supported
-  **Path-aware**: Intelligent extraction from file paths in task description

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 22:50:38 +08:00
catlog22
b5fb4e3d48 docs: Enhance path trigger strategy with intelligent skill name extraction
## Enhancement
- Updated path mention trigger description for clarity
- Emphasized intelligent extraction: "system extracts skill name from file paths for intelligent triggering"
- Removed example, replaced with mechanism description for better understanding

## Changes
- Line 25: Changed from "e.g., mentioning files under SKILL's project path" to "system extracts skill name from file paths for intelligent triggering"
- Clearer expression of automatic SKILL activation via path-based extraction

## Example Mechanism
- User mentions: `D:\projects\hydro_generator_module\src\file.py`
- System extracts: `hydro_generator_module` as potential skill name
- Automatic trigger: Activates corresponding SKILL package if exists

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 22:32:41 +08:00
catlog22
1cabccbbdd docs: Add path-based trigger strategy to load-skill-memory command
## Enhancement
- Added path mention trigger strategy in Note section (1 line)
- Clarified: "Normal SKILL activation happens automatically via description triggers or path mentions"
- Example: Mentioning files under SKILL's project path auto-triggers SKILL package
- Helps users understand automatic SKILL activation mechanisms

## Changes
- Modified line 25: Added "or path mentions (e.g., mentioning files under SKILL's project path)"
- Total addition: 1 line as requested

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 22:30:29 +08:00
catlog22
8926611964 refactor: update load-skill-memory command to manual activation and intent-driven loading 2025-11-03 21:55:22 +08:00
catlog22
8a9bc7a210 refactor: optimize load-skill-memory structure and remove emojis
- Merge duplicate content: consolidate Sections 4, 6, 7, 9, 10
- Reduce file size from 382 to 348 lines (-8.9%)
- Remove all emoji icons, replace with text alternatives
- Improve section flow: 8 sections total (was 11)
- Preserve all information while eliminating redundancy
2025-11-03 21:38:42 +08:00
catlog22
25a358b729 feat: implement dynamic SKILL discovery with intelligent matching
Transform load-skill-memory from manual specification to automatic discovery:

**Core Change**:
- From: User specifies SKILL name manually
- To: System automatically discovers and matches SKILL based on task context

**New Capabilities**:

1. **Three-Step Execution**:
   - Step 1: Discover all available SKILLs (.claude/skills/)
   - Step 2: Match most relevant SKILL using scoring algorithm
   - Step 3: Activate matched SKILL via Skill() tool

2. **Intelligent Matching Algorithm**:
   - **Path-Based** (Highest Priority): Direct path match from file paths
   - **Keyword Matching** (Secondary): Score by keyword overlap
   - **Action Matching** (Tertiary): Detect action verbs (分析/修改/学习)

3. **Updated Parameters**:
   - From: `<skill_name> [--level] [task description]`
   - To: `"task description or file path"`
   - More intuitive user experience

4. **New Examples**:
   ```bash
   /memory:load-skill-memory "分析热模型builder pattern实现"
   /memory:load-skill-memory "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
   /memory:load-skill-memory "修改workflow文档生成逻辑"
   ```

**Matching Examples**:

Task: "分析热模型builder pattern实现"
- hydro_generator_module: 4 points (thermal+builder+analyzing) 
- Claude_dms3: 1 point (analyzing only)

Task: "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
- Path match: hydro_generator_module  (exact path)

**Benefits**:
- No manual SKILL name required
- Automatic best match selection
- Path-based intelligent routing
- Keyword scoring for relevance
- Action verb detection for context

**User Experience**:
Before: "/memory:load-skill-memory hydro_generator_module '分析热模型'"
After: "/memory:load-skill-memory '分析热模型实现'"

System automatically discovers and activates hydro_generator_module SKILL.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:31:06 +08:00
catlog22
9e0a70150a refactor: redesign load-skill-memory to use Skill tool activation
Complete redesign from manual document reading to SKILL activation pattern:

**Before (Manual Loading)**:
- Complex level selection logic (0-3)
- Manual Read operations for each document
- Task-based auto-level selection
- ~200 lines of document loading code

**After (Skill Activation)**:
- Simple two-step: Validate → Activate
- Use Skill(command: "skill_name") tool
- System handles all documentation loading automatically
- ~100 lines simpler, more maintainable

**Key Changes**:

1. **Examples Updated**:
   - From: `/memory:load-skill-memory hydro_generator_module "分析热模型"`
   - To: `Skill(command: "hydro_generator_module")`

2. **Execution Flow Simplified**:
   - Step 1: Validate SKILL.md exists
   - Step 2: Skill(command: "skill_name")
   - System automatically handles progressive loading

3. **Removed Manual Logic**:
   - No explicit --level parameter
   - No manual document reading
   - No level selection algorithm
   - System determines context needs automatically

4. **Added SKILL Trigger Mechanism**:
   - Explains how SKILL description triggers work
   - Keyword matching (domain terms)
   - Action detection (analyzing, modifying, learning)
   - Memory gap detection
   - Path-based triggering

5. **Updated Integration Examples**:
   ```javascript
   Skill(command: "hydro_generator_module")
   SlashCommand(command: "/workflow:plan \"task\"")
   ```

**Benefits**:
- Simpler user experience (just activate SKILL)
- Automatic context optimization
- System handles complexity
- Follows Claude SKILL architecture
- Leverages built-in SKILL trigger patterns

**Philosophy Shift**:
- From: Manual control over documentation loading
- To: Trust SKILL system to load appropriate context
- Aligns with skill-memory.md description optimization

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:26:52 +08:00
catlog22
7b2160d51f feat: add /memory:load-skill-memory command for progressive SKILL loading
New command for loading SKILL package documentation with intelligent level selection:

**Two-Step Process**:
1. Validate SKILL existence in .claude/skills/{skill_name}/
2. Load documentation based on task requirements and complexity

**Progressive Loading Levels**:
- Level 0: Quick Start (~2K tokens) - Overview exploration
- Level 1: Core Modules (~10K tokens) - Module analysis
- Level 2: Complete (~25K tokens) - Code modification
- Level 3: Deep Dive (~40K tokens) - Feature implementation

**Auto-Level Selection**:
- Keyword-based detection from task description
- "快速了解" → Level 0
- "分析" → Level 1
- "修改" → Level 2
- "实现" → Level 3

**Key Features**:
- SKILL existence validation with available SKILLs listing
- Task-driven level auto-selection
- Token budget estimation
- Error handling for missing SKILLs/documentation
- Explicit --level override support

**Usage Examples**:
```bash
/memory:load-skill-memory hydro_generator_module "分析热模型"
/memory:load-skill-memory Claude_dms3 --level 2 "修改workflow"
/memory:load-skill-memory multiphysics_network "实现耦合器"
```

**Integration**:
- Works with SKILL packages generated by /memory:skill-memory
- Optimizes token usage through progressive loading
- Supports workflow planning and execution commands

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:10:32 +08:00