Commit Graph

5 Commits

Author SHA1 Message Date
catlog22
8926611964 refactor: update load-skill-memory command to manual activation and intent-driven loading 2025-11-03 21:55:22 +08:00
catlog22
8a9bc7a210 refactor: optimize load-skill-memory structure and remove emojis
- Merge duplicate content: consolidate Sections 4, 6, 7, 9, 10
- Reduce file size from 382 to 348 lines (-8.9%)
- Remove all emoji icons, replace with text alternatives
- Improve section flow: 8 sections total (was 11)
- Preserve all information while eliminating redundancy
2025-11-03 21:38:42 +08:00
catlog22
25a358b729 feat: implement dynamic SKILL discovery with intelligent matching
Transform load-skill-memory from manual specification to automatic discovery:

**Core Change**:
- From: User specifies SKILL name manually
- To: System automatically discovers and matches SKILL based on task context

**New Capabilities**:

1. **Three-Step Execution**:
   - Step 1: Discover all available SKILLs (.claude/skills/)
   - Step 2: Match most relevant SKILL using scoring algorithm
   - Step 3: Activate matched SKILL via Skill() tool

2. **Intelligent Matching Algorithm**:
   - **Path-Based** (Highest Priority): Direct path match from file paths
   - **Keyword Matching** (Secondary): Score by keyword overlap
   - **Action Matching** (Tertiary): Detect action verbs (分析/修改/学习)

3. **Updated Parameters**:
   - From: `<skill_name> [--level] [task description]`
   - To: `"task description or file path"`
   - More intuitive user experience

4. **New Examples**:
   ```bash
   /memory:load-skill-memory "分析热模型builder pattern实现"
   /memory:load-skill-memory "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
   /memory:load-skill-memory "修改workflow文档生成逻辑"
   ```

**Matching Examples**:

Task: "分析热模型builder pattern实现"
- hydro_generator_module: 4 points (thermal+builder+analyzing) 
- Claude_dms3: 1 point (analyzing only)

Task: "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
- Path match: hydro_generator_module  (exact path)

**Benefits**:
- No manual SKILL name required
- Automatic best match selection
- Path-based intelligent routing
- Keyword scoring for relevance
- Action verb detection for context

**User Experience**:
Before: "/memory:load-skill-memory hydro_generator_module '分析热模型'"
After: "/memory:load-skill-memory '分析热模型实现'"

System automatically discovers and activates hydro_generator_module SKILL.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:31:06 +08:00
catlog22
9e0a70150a refactor: redesign load-skill-memory to use Skill tool activation
Complete redesign from manual document reading to SKILL activation pattern:

**Before (Manual Loading)**:
- Complex level selection logic (0-3)
- Manual Read operations for each document
- Task-based auto-level selection
- ~200 lines of document loading code

**After (Skill Activation)**:
- Simple two-step: Validate → Activate
- Use Skill(command: "skill_name") tool
- System handles all documentation loading automatically
- ~100 lines simpler, more maintainable

**Key Changes**:

1. **Examples Updated**:
   - From: `/memory:load-skill-memory hydro_generator_module "分析热模型"`
   - To: `Skill(command: "hydro_generator_module")`

2. **Execution Flow Simplified**:
   - Step 1: Validate SKILL.md exists
   - Step 2: Skill(command: "skill_name")
   - System automatically handles progressive loading

3. **Removed Manual Logic**:
   - No explicit --level parameter
   - No manual document reading
   - No level selection algorithm
   - System determines context needs automatically

4. **Added SKILL Trigger Mechanism**:
   - Explains how SKILL description triggers work
   - Keyword matching (domain terms)
   - Action detection (analyzing, modifying, learning)
   - Memory gap detection
   - Path-based triggering

5. **Updated Integration Examples**:
   ```javascript
   Skill(command: "hydro_generator_module")
   SlashCommand(command: "/workflow:plan \"task\"")
   ```

**Benefits**:
- Simpler user experience (just activate SKILL)
- Automatic context optimization
- System handles complexity
- Follows Claude SKILL architecture
- Leverages built-in SKILL trigger patterns

**Philosophy Shift**:
- From: Manual control over documentation loading
- To: Trust SKILL system to load appropriate context
- Aligns with skill-memory.md description optimization

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:26:52 +08:00
catlog22
7b2160d51f feat: add /memory:load-skill-memory command for progressive SKILL loading
New command for loading SKILL package documentation with intelligent level selection:

**Two-Step Process**:
1. Validate SKILL existence in .claude/skills/{skill_name}/
2. Load documentation based on task requirements and complexity

**Progressive Loading Levels**:
- Level 0: Quick Start (~2K tokens) - Overview exploration
- Level 1: Core Modules (~10K tokens) - Module analysis
- Level 2: Complete (~25K tokens) - Code modification
- Level 3: Deep Dive (~40K tokens) - Feature implementation

**Auto-Level Selection**:
- Keyword-based detection from task description
- "快速了解" → Level 0
- "分析" → Level 1
- "修改" → Level 2
- "实现" → Level 3

**Key Features**:
- SKILL existence validation with available SKILLs listing
- Task-driven level auto-selection
- Token budget estimation
- Error handling for missing SKILLs/documentation
- Explicit --level override support

**Usage Examples**:
```bash
/memory:load-skill-memory hydro_generator_module "分析热模型"
/memory:load-skill-memory Claude_dms3 --level 2 "修改workflow"
/memory:load-skill-memory multiphysics_network "实现耦合器"
```

**Integration**:
- Works with SKILL packages generated by /memory:skill-memory
- Optimizes token usage through progressive loading
- Supports workflow planning and execution commands

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-03 21:10:32 +08:00