mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-10 02:24:35 +08:00
- Introduced a comprehensive design document for a Code Semantic Graph aimed at enhancing static analysis capabilities. - Defined the architecture, core components, and implementation steps for analyzing function calls, data flow, and dependencies. - Included detailed specifications for nodes and edges in the graph, along with database schema for storage. - Outlined phases for implementation, technical challenges, success metrics, and application scenarios.
973 lines
30 KiB
Markdown
973 lines
30 KiB
Markdown
# Docstring与LLM混合策略设计方案
|
||
|
||
## 1. 背景与目标
|
||
|
||
### 1.1 当前问题
|
||
|
||
现有 `llm_enhancer.py` 的实现存在以下问题:
|
||
|
||
1. **忽略已有文档**:对所有代码无差别调用LLM,即使已有高质量的docstring
|
||
2. **成本浪费**:重复生成已有信息,增加API调用费用和时间
|
||
3. **信息质量不一致**:LLM生成的内容可能不如作者编写的docstring准确
|
||
4. **缺少作者意图**:丢失了docstring中的设计决策、使用示例等关键信息
|
||
|
||
### 1.2 设计目标
|
||
|
||
实现**智能混合策略**,结合docstring和LLM的优势:
|
||
|
||
1. **优先使用docstring**:作为最权威的信息源
|
||
2. **LLM作为补充**:填补docstring缺失或质量不足的部分
|
||
3. **智能质量评估**:自动判断docstring质量,决定是否需要LLM增强
|
||
4. **成本优化**:减少不必要的LLM调用,降低API费用
|
||
5. **信息融合**:将docstring和LLM生成的内容有机结合
|
||
|
||
## 2. 技术架构
|
||
|
||
### 2.1 整体流程
|
||
|
||
```
|
||
Code Symbol
|
||
↓
|
||
[Docstring Extractor] ← 提取docstring
|
||
↓
|
||
[Quality Evaluator] ← 评估docstring质量
|
||
↓
|
||
├─ High Quality → Use Docstring Directly
|
||
│ + LLM Generate Keywords Only
|
||
│
|
||
├─ Medium Quality → LLM Refine & Enhance
|
||
│ (docstring作为base)
|
||
│
|
||
└─ Low/No Docstring → LLM Full Generation
|
||
(现有流程)
|
||
↓
|
||
[Metadata Merger] ← 合并docstring和LLM内容
|
||
↓
|
||
Final SemanticMetadata
|
||
```
|
||
|
||
### 2.2 核心组件
|
||
|
||
```python
|
||
from dataclasses import dataclass
|
||
from enum import Enum
|
||
from typing import Optional
|
||
|
||
class DocstringQuality(Enum):
|
||
"""Docstring质量等级"""
|
||
MISSING = "missing" # 无docstring
|
||
LOW = "low" # 质量低:<10字符或纯占位符
|
||
MEDIUM = "medium" # 质量中:有基本描述但不完整
|
||
HIGH = "high" # 质量高:详细且结构化
|
||
|
||
@dataclass
|
||
class DocstringMetadata:
|
||
"""从docstring提取的元数据"""
|
||
raw_text: str
|
||
quality: DocstringQuality
|
||
summary: Optional[str] = None # 提取的摘要
|
||
parameters: Optional[dict] = None # 参数说明
|
||
returns: Optional[str] = None # 返回值说明
|
||
examples: Optional[str] = None # 使用示例
|
||
notes: Optional[str] = None # 注意事项
|
||
```
|
||
|
||
## 3. 详细实现步骤
|
||
|
||
### 3.1 Docstring提取与解析
|
||
|
||
```python
|
||
import re
|
||
from typing import Optional
|
||
|
||
class DocstringExtractor:
|
||
"""Docstring提取器"""
|
||
|
||
# Docstring风格正则
|
||
GOOGLE_STYLE_PATTERN = re.compile(
|
||
r'Args:|Returns:|Raises:|Examples:|Note:',
|
||
re.MULTILINE
|
||
)
|
||
|
||
NUMPY_STYLE_PATTERN = re.compile(
|
||
r'Parameters\n-+|Returns\n-+|Examples\n-+',
|
||
re.MULTILINE
|
||
)
|
||
|
||
def extract_from_code(self, content: str, symbol: Symbol) -> Optional[str]:
|
||
"""从代码中提取docstring"""
|
||
|
||
lines = content.splitlines()
|
||
start_line = symbol.range[0] - 1 # 0-indexed
|
||
|
||
# 查找函数定义后的第一个字符串字面量
|
||
# 通常在函数定义的下一行或几行内
|
||
for i in range(start_line + 1, min(start_line + 10, len(lines))):
|
||
line = lines[i].strip()
|
||
|
||
# Python triple-quoted string
|
||
if line.startswith('"""') or line.startswith("'''"):
|
||
return self._extract_multiline_docstring(lines, i)
|
||
|
||
return None
|
||
|
||
def _extract_multiline_docstring(
|
||
self,
|
||
lines: List[str],
|
||
start_idx: int
|
||
) -> str:
|
||
"""提取多行docstring"""
|
||
|
||
quote_char = '"""' if lines[start_idx].strip().startswith('"""') else "'''"
|
||
docstring_lines = []
|
||
|
||
# 检查是否单行docstring
|
||
first_line = lines[start_idx].strip()
|
||
if first_line.count(quote_char) == 2:
|
||
# 单行: """This is a docstring."""
|
||
return first_line.strip(quote_char).strip()
|
||
|
||
# 多行docstring
|
||
in_docstring = True
|
||
for i in range(start_idx, len(lines)):
|
||
line = lines[i]
|
||
|
||
if i == start_idx:
|
||
# 第一行:移除开始的引号
|
||
docstring_lines.append(line.strip().lstrip(quote_char))
|
||
elif quote_char in line:
|
||
# 结束行:移除结束的引号
|
||
docstring_lines.append(line.strip().rstrip(quote_char))
|
||
break
|
||
else:
|
||
docstring_lines.append(line.strip())
|
||
|
||
return '\n'.join(docstring_lines).strip()
|
||
|
||
def parse_docstring(self, raw_docstring: str) -> DocstringMetadata:
|
||
"""解析docstring,提取结构化信息"""
|
||
|
||
if not raw_docstring:
|
||
return DocstringMetadata(
|
||
raw_text="",
|
||
quality=DocstringQuality.MISSING
|
||
)
|
||
|
||
# 评估质量
|
||
quality = self._evaluate_quality(raw_docstring)
|
||
|
||
# 提取各个部分
|
||
metadata = DocstringMetadata(
|
||
raw_text=raw_docstring,
|
||
quality=quality,
|
||
)
|
||
|
||
# 提取摘要(第一行或第一段)
|
||
metadata.summary = self._extract_summary(raw_docstring)
|
||
|
||
# 如果是Google或NumPy风格,提取结构化内容
|
||
if self.GOOGLE_STYLE_PATTERN.search(raw_docstring):
|
||
self._parse_google_style(raw_docstring, metadata)
|
||
elif self.NUMPY_STYLE_PATTERN.search(raw_docstring):
|
||
self._parse_numpy_style(raw_docstring, metadata)
|
||
|
||
return metadata
|
||
|
||
def _evaluate_quality(self, docstring: str) -> DocstringQuality:
|
||
"""评估docstring质量"""
|
||
|
||
if not docstring or len(docstring.strip()) == 0:
|
||
return DocstringQuality.MISSING
|
||
|
||
# 检查是否是占位符
|
||
placeholders = ['todo', 'fixme', 'tbd', 'placeholder', '...']
|
||
if any(p in docstring.lower() for p in placeholders):
|
||
return DocstringQuality.LOW
|
||
|
||
# 长度检查
|
||
if len(docstring.strip()) < 10:
|
||
return DocstringQuality.LOW
|
||
|
||
# 检查是否有结构化内容
|
||
has_structure = (
|
||
self.GOOGLE_STYLE_PATTERN.search(docstring) or
|
||
self.NUMPY_STYLE_PATTERN.search(docstring)
|
||
)
|
||
|
||
# 检查是否有足够的描述性文本
|
||
word_count = len(docstring.split())
|
||
|
||
if has_structure and word_count >= 20:
|
||
return DocstringQuality.HIGH
|
||
elif word_count >= 10:
|
||
return DocstringQuality.MEDIUM
|
||
else:
|
||
return DocstringQuality.LOW
|
||
|
||
def _extract_summary(self, docstring: str) -> str:
|
||
"""提取摘要(第一行或第一段)"""
|
||
|
||
lines = docstring.split('\n')
|
||
# 第一行非空行作为摘要
|
||
for line in lines:
|
||
if line.strip():
|
||
return line.strip()
|
||
|
||
return ""
|
||
|
||
def _parse_google_style(self, docstring: str, metadata: DocstringMetadata):
|
||
"""解析Google风格docstring"""
|
||
|
||
# 提取Args
|
||
args_match = re.search(r'Args:(.*?)(?=Returns:|Raises:|Examples:|Note:|\Z)', docstring, re.DOTALL)
|
||
if args_match:
|
||
metadata.parameters = self._parse_args_section(args_match.group(1))
|
||
|
||
# 提取Returns
|
||
returns_match = re.search(r'Returns:(.*?)(?=Raises:|Examples:|Note:|\Z)', docstring, re.DOTALL)
|
||
if returns_match:
|
||
metadata.returns = returns_match.group(1).strip()
|
||
|
||
# 提取Examples
|
||
examples_match = re.search(r'Examples:(.*?)(?=Note:|\Z)', docstring, re.DOTALL)
|
||
if examples_match:
|
||
metadata.examples = examples_match.group(1).strip()
|
||
|
||
def _parse_args_section(self, args_text: str) -> dict:
|
||
"""解析参数列表"""
|
||
|
||
params = {}
|
||
# 匹配 "param_name (type): description" 或 "param_name: description"
|
||
pattern = re.compile(r'(\w+)\s*(?:\(([^)]+)\))?\s*:\s*(.+)')
|
||
|
||
for line in args_text.split('\n'):
|
||
match = pattern.search(line.strip())
|
||
if match:
|
||
param_name, param_type, description = match.groups()
|
||
params[param_name] = {
|
||
'type': param_type,
|
||
'description': description.strip()
|
||
}
|
||
|
||
return params
|
||
```
|
||
|
||
### 3.2 智能混合策略引擎
|
||
|
||
```python
|
||
class HybridEnhancer:
|
||
"""Docstring与LLM混合增强器"""
|
||
|
||
def __init__(
|
||
self,
|
||
llm_enhancer: LLMEnhancer,
|
||
docstring_extractor: DocstringExtractor
|
||
):
|
||
self.llm_enhancer = llm_enhancer
|
||
self.docstring_extractor = docstring_extractor
|
||
|
||
def enhance_with_strategy(
|
||
self,
|
||
file_data: FileData,
|
||
symbols: List[Symbol]
|
||
) -> Dict[str, SemanticMetadata]:
|
||
"""根据docstring质量选择增强策略"""
|
||
|
||
results = {}
|
||
|
||
for symbol in symbols:
|
||
# 1. 提取并解析docstring
|
||
raw_docstring = self.docstring_extractor.extract_from_code(
|
||
file_data.content, symbol
|
||
)
|
||
doc_metadata = self.docstring_extractor.parse_docstring(raw_docstring or "")
|
||
|
||
# 2. 根据质量选择策略
|
||
semantic_metadata = self._apply_strategy(
|
||
file_data, symbol, doc_metadata
|
||
)
|
||
|
||
results[symbol.name] = semantic_metadata
|
||
|
||
return results
|
||
|
||
def _apply_strategy(
|
||
self,
|
||
file_data: FileData,
|
||
symbol: Symbol,
|
||
doc_metadata: DocstringMetadata
|
||
) -> SemanticMetadata:
|
||
"""应用混合策略"""
|
||
|
||
quality = doc_metadata.quality
|
||
|
||
if quality == DocstringQuality.HIGH:
|
||
# 高质量:直接使用docstring,只用LLM生成keywords
|
||
return self._use_docstring_with_llm_keywords(symbol, doc_metadata)
|
||
|
||
elif quality == DocstringQuality.MEDIUM:
|
||
# 中等质量:让LLM精炼和增强
|
||
return self._refine_with_llm(file_data, symbol, doc_metadata)
|
||
|
||
else: # LOW or MISSING
|
||
# 低质量或无:完全由LLM生成
|
||
return self._full_llm_generation(file_data, symbol)
|
||
|
||
def _use_docstring_with_llm_keywords(
|
||
self,
|
||
symbol: Symbol,
|
||
doc_metadata: DocstringMetadata
|
||
) -> SemanticMetadata:
|
||
"""策略1:使用docstring,LLM只生成keywords"""
|
||
|
||
# 直接使用docstring的摘要
|
||
summary = doc_metadata.summary or doc_metadata.raw_text[:200]
|
||
|
||
# 使用LLM生成keywords
|
||
keywords = self._generate_keywords_only(summary, symbol.name)
|
||
|
||
# 从docstring推断purpose
|
||
purpose = self._infer_purpose_from_docstring(doc_metadata)
|
||
|
||
return SemanticMetadata(
|
||
summary=summary,
|
||
keywords=keywords,
|
||
purpose=purpose,
|
||
file_path=symbol.file_path if hasattr(symbol, 'file_path') else None,
|
||
symbol_name=symbol.name,
|
||
llm_tool="hybrid_docstring_primary",
|
||
)
|
||
|
||
def _refine_with_llm(
|
||
self,
|
||
file_data: FileData,
|
||
symbol: Symbol,
|
||
doc_metadata: DocstringMetadata
|
||
) -> SemanticMetadata:
|
||
"""策略2:让LLM精炼和增强docstring"""
|
||
|
||
prompt = f"""
|
||
PURPOSE: Refine and enhance an existing docstring for better semantic search
|
||
TASK:
|
||
- Review the existing docstring
|
||
- Generate a concise summary (1-2 sentences) that captures the core purpose
|
||
- Extract 8-12 relevant keywords for search
|
||
- Identify the functional category/purpose
|
||
|
||
EXISTING DOCSTRING:
|
||
{doc_metadata.raw_text}
|
||
|
||
CODE CONTEXT:
|
||
Function: {symbol.name}
|
||
```{file_data.language}
|
||
{self._get_symbol_code(file_data.content, symbol)}
|
||
```
|
||
|
||
OUTPUT: JSON format
|
||
{{
|
||
"summary": "refined summary based on docstring and code",
|
||
"keywords": ["keyword1", "keyword2", ...],
|
||
"purpose": "category"
|
||
}}
|
||
"""
|
||
|
||
response = self.llm_enhancer._invoke_ccw_cli(prompt, tool='gemini')
|
||
if response['success']:
|
||
data = json.loads(self.llm_enhancer._extract_json(response['stdout']))
|
||
return SemanticMetadata(
|
||
summary=data.get('summary', doc_metadata.summary),
|
||
keywords=data.get('keywords', []),
|
||
purpose=data.get('purpose', 'unknown'),
|
||
file_path=file_data.path,
|
||
symbol_name=symbol.name,
|
||
llm_tool="hybrid_llm_refined",
|
||
)
|
||
|
||
# Fallback: 使用docstring
|
||
return self._use_docstring_with_llm_keywords(symbol, doc_metadata)
|
||
|
||
def _full_llm_generation(
|
||
self,
|
||
file_data: FileData,
|
||
symbol: Symbol
|
||
) -> SemanticMetadata:
|
||
"""策略3:完全由LLM生成(原有流程)"""
|
||
|
||
# 复用现有的LLM enhancer
|
||
code_snippet = self._get_symbol_code(file_data.content, symbol)
|
||
|
||
results = self.llm_enhancer.enhance_files([
|
||
FileData(
|
||
path=f"{file_data.path}:{symbol.name}",
|
||
content=code_snippet,
|
||
language=file_data.language
|
||
)
|
||
])
|
||
|
||
return results.get(f"{file_data.path}:{symbol.name}", SemanticMetadata(
|
||
summary="",
|
||
keywords=[],
|
||
purpose="unknown",
|
||
file_path=file_data.path,
|
||
symbol_name=symbol.name,
|
||
llm_tool="hybrid_llm_full",
|
||
))
|
||
|
||
def _generate_keywords_only(self, summary: str, symbol_name: str) -> List[str]:
|
||
"""仅生成keywords(快速LLM调用)"""
|
||
|
||
prompt = f"""
|
||
PURPOSE: Generate search keywords for a code function
|
||
TASK: Extract 5-8 relevant keywords from the summary
|
||
|
||
Summary: {summary}
|
||
Function Name: {symbol_name}
|
||
|
||
OUTPUT: Comma-separated keywords
|
||
"""
|
||
|
||
response = self.llm_enhancer._invoke_ccw_cli(prompt, tool='gemini')
|
||
if response['success']:
|
||
keywords_str = response['stdout'].strip()
|
||
return [k.strip() for k in keywords_str.split(',')]
|
||
|
||
# Fallback: 从摘要提取关键词
|
||
return self._extract_keywords_heuristic(summary)
|
||
|
||
def _extract_keywords_heuristic(self, text: str) -> List[str]:
|
||
"""启发式关键词提取(无需LLM)"""
|
||
|
||
# 简单实现:提取名词性词组
|
||
import re
|
||
words = re.findall(r'\b[a-z]{4,}\b', text.lower())
|
||
|
||
# 过滤常见词
|
||
stopwords = {'this', 'that', 'with', 'from', 'have', 'will', 'your', 'their'}
|
||
keywords = [w for w in words if w not in stopwords]
|
||
|
||
return list(set(keywords))[:8]
|
||
|
||
def _infer_purpose_from_docstring(self, doc_metadata: DocstringMetadata) -> str:
|
||
"""从docstring推断purpose(无需LLM)"""
|
||
|
||
summary = doc_metadata.summary.lower()
|
||
|
||
# 简单规则匹配
|
||
if 'authenticate' in summary or 'login' in summary:
|
||
return 'auth'
|
||
elif 'validate' in summary or 'check' in summary:
|
||
return 'validation'
|
||
elif 'parse' in summary or 'format' in summary:
|
||
return 'data_processing'
|
||
elif 'api' in summary or 'endpoint' in summary:
|
||
return 'api'
|
||
elif 'database' in summary or 'query' in summary:
|
||
return 'data'
|
||
elif 'test' in summary:
|
||
return 'test'
|
||
|
||
return 'util'
|
||
|
||
def _get_symbol_code(self, content: str, symbol: Symbol) -> str:
|
||
"""提取符号的代码"""
|
||
|
||
lines = content.splitlines()
|
||
start, end = symbol.range
|
||
return '\n'.join(lines[start-1:end])
|
||
```
|
||
|
||
### 3.3 成本优化统计
|
||
|
||
```python
|
||
@dataclass
|
||
class EnhancementStats:
|
||
"""增强统计"""
|
||
total_symbols: int = 0
|
||
used_docstring_only: int = 0 # 只使用docstring
|
||
llm_keywords_only: int = 0 # LLM只生成keywords
|
||
llm_refined: int = 0 # LLM精炼docstring
|
||
llm_full_generation: int = 0 # LLM完全生成
|
||
total_llm_calls: int = 0
|
||
estimated_cost_savings: float = 0.0 # 相比全用LLM节省的成本
|
||
|
||
class CostOptimizedEnhancer(HybridEnhancer):
|
||
"""带成本统计的增强器"""
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.stats = EnhancementStats()
|
||
|
||
def enhance_with_strategy(
|
||
self,
|
||
file_data: FileData,
|
||
symbols: List[Symbol]
|
||
) -> Dict[str, SemanticMetadata]:
|
||
"""增强并统计成本"""
|
||
|
||
self.stats.total_symbols += len(symbols)
|
||
results = super().enhance_with_strategy(file_data, symbols)
|
||
|
||
# 统计各策略使用情况
|
||
for metadata in results.values():
|
||
if metadata.llm_tool == "hybrid_docstring_primary":
|
||
self.stats.used_docstring_only += 1
|
||
self.stats.llm_keywords_only += 1
|
||
self.stats.total_llm_calls += 1
|
||
elif metadata.llm_tool == "hybrid_llm_refined":
|
||
self.stats.llm_refined += 1
|
||
self.stats.total_llm_calls += 1
|
||
elif metadata.llm_tool == "hybrid_llm_full":
|
||
self.stats.llm_full_generation += 1
|
||
self.stats.total_llm_calls += 1
|
||
|
||
# 计算成本节省(假设:keywords-only调用成本为full的20%)
|
||
keywords_only_savings = self.stats.llm_keywords_only * 0.8 # 节省80%
|
||
full_generation_count = self.stats.total_symbols - self.stats.llm_keywords_only
|
||
self.stats.estimated_cost_savings = keywords_only_savings / full_generation_count if full_generation_count > 0 else 0
|
||
|
||
return results
|
||
|
||
def print_stats(self):
|
||
"""打印统计信息"""
|
||
|
||
print("=== Enhancement Statistics ===")
|
||
print(f"Total Symbols: {self.stats.total_symbols}")
|
||
print(f"Used Docstring (with LLM keywords): {self.stats.used_docstring_only} ({self.stats.used_docstring_only/self.stats.total_symbols*100:.1f}%)")
|
||
print(f"LLM Refined Docstring: {self.stats.llm_refined} ({self.stats.llm_refined/self.stats.total_symbols*100:.1f}%)")
|
||
print(f"LLM Full Generation: {self.stats.llm_full_generation} ({self.stats.llm_full_generation/self.stats.total_symbols*100:.1f}%)")
|
||
print(f"Total LLM Calls: {self.stats.total_llm_calls}")
|
||
print(f"Estimated Cost Savings: {self.stats.estimated_cost_savings*100:.1f}%")
|
||
```
|
||
|
||
## 4. 配置选项
|
||
|
||
```python
|
||
@dataclass
|
||
class HybridEnhancementConfig:
|
||
"""混合增强配置"""
|
||
|
||
# 是否启用混合策略(False则回退到全LLM模式)
|
||
enable_hybrid: bool = True
|
||
|
||
# 质量阈值配置
|
||
use_docstring_threshold: DocstringQuality = DocstringQuality.HIGH
|
||
refine_docstring_threshold: DocstringQuality = DocstringQuality.MEDIUM
|
||
|
||
# 是否为高质量docstring生成keywords
|
||
generate_keywords_for_docstring: bool = True
|
||
|
||
# LLM配置
|
||
llm_tool: str = "gemini"
|
||
llm_timeout: int = 300000
|
||
|
||
# 成本优化
|
||
batch_size: int = 5 # 批量处理大小
|
||
skip_test_files: bool = True # 跳过测试文件(通常docstring较少)
|
||
|
||
# 调试选项
|
||
log_strategy_decisions: bool = False # 记录策略决策日志
|
||
```
|
||
|
||
## 5. 测试策略
|
||
|
||
### 5.1 单元测试
|
||
|
||
```python
|
||
import pytest
|
||
|
||
class TestDocstringExtractor:
|
||
"""测试docstring提取"""
|
||
|
||
def test_extract_google_style(self):
|
||
"""测试Google风格docstring提取"""
|
||
code = '''
|
||
def calculate_total(items, discount=0):
|
||
"""Calculate total price with optional discount.
|
||
|
||
This function processes a list of items and applies
|
||
a discount if specified.
|
||
|
||
Args:
|
||
items (list): List of item objects with price attribute.
|
||
discount (float): Discount percentage (0-1). Defaults to 0.
|
||
|
||
Returns:
|
||
float: Total price after discount.
|
||
|
||
Examples:
|
||
>>> calculate_total([item1, item2], discount=0.1)
|
||
90.0
|
||
"""
|
||
total = sum(item.price for item in items)
|
||
return total * (1 - discount)
|
||
'''
|
||
extractor = DocstringExtractor()
|
||
symbol = Symbol(name='calculate_total', kind='function', range=(1, 18))
|
||
docstring = extractor.extract_from_code(code, symbol)
|
||
|
||
assert docstring is not None
|
||
metadata = extractor.parse_docstring(docstring)
|
||
|
||
assert metadata.quality == DocstringQuality.HIGH
|
||
assert 'Calculate total price' in metadata.summary
|
||
assert metadata.parameters is not None
|
||
assert 'items' in metadata.parameters
|
||
assert metadata.returns is not None
|
||
assert metadata.examples is not None
|
||
|
||
def test_extract_low_quality_docstring(self):
|
||
"""测试低质量docstring识别"""
|
||
code = '''
|
||
def process():
|
||
"""TODO"""
|
||
pass
|
||
'''
|
||
extractor = DocstringExtractor()
|
||
symbol = Symbol(name='process', kind='function', range=(1, 3))
|
||
docstring = extractor.extract_from_code(code, symbol)
|
||
|
||
metadata = extractor.parse_docstring(docstring)
|
||
assert metadata.quality == DocstringQuality.LOW
|
||
|
||
class TestHybridEnhancer:
|
||
"""测试混合增强器"""
|
||
|
||
def test_high_quality_docstring_strategy(self):
|
||
"""测试高质量docstring使用策略"""
|
||
|
||
extractor = DocstringExtractor()
|
||
llm_enhancer = LLMEnhancer(LLMConfig(enabled=True))
|
||
hybrid = HybridEnhancer(llm_enhancer, extractor)
|
||
|
||
# 模拟高质量docstring
|
||
doc_metadata = DocstringMetadata(
|
||
raw_text="Validate user credentials against database.",
|
||
quality=DocstringQuality.HIGH,
|
||
summary="Validate user credentials against database."
|
||
)
|
||
|
||
symbol = Symbol(name='validate_user', kind='function', range=(1, 10))
|
||
|
||
result = hybrid._use_docstring_with_llm_keywords(symbol, doc_metadata)
|
||
|
||
# 应该使用docstring的摘要
|
||
assert result.summary == doc_metadata.summary
|
||
# 应该有keywords(可能由LLM或启发式生成)
|
||
assert len(result.keywords) > 0
|
||
|
||
def test_cost_optimization(self):
|
||
"""测试成本优化效果"""
|
||
|
||
enhancer = CostOptimizedEnhancer(
|
||
llm_enhancer=LLMEnhancer(LLMConfig(enabled=False)), # Mock
|
||
docstring_extractor=DocstringExtractor()
|
||
)
|
||
|
||
# 模拟处理10个symbol,其中5个有高质量docstring
|
||
# 预期:5个只调用keywords生成,5个完整LLM
|
||
# 总调用10次,但成本降低(keywords调用更便宜)
|
||
|
||
# 实际测试需要mock LLM调用
|
||
pass
|
||
```
|
||
|
||
### 5.2 集成测试
|
||
|
||
```python
|
||
class TestHybridEnhancementPipeline:
|
||
"""测试完整的混合增强流程"""
|
||
|
||
def test_full_pipeline(self):
|
||
"""测试完整流程:代码 -> docstring提取 -> 质量评估 -> 策略选择 -> 增强"""
|
||
|
||
code = '''
|
||
def authenticate_user(username, password):
|
||
"""Authenticate user with username and password.
|
||
|
||
Args:
|
||
username (str): User's username
|
||
password (str): User's password
|
||
|
||
Returns:
|
||
bool: True if authenticated, False otherwise
|
||
"""
|
||
# ... implementation
|
||
pass
|
||
|
||
def helper_func(x):
|
||
# No docstring
|
||
return x * 2
|
||
'''
|
||
|
||
file_data = FileData(path='auth.py', content=code, language='python')
|
||
symbols = [
|
||
Symbol(name='authenticate_user', kind='function', range=(1, 11)),
|
||
Symbol(name='helper_func', kind='function', range=(13, 15)),
|
||
]
|
||
|
||
extractor = DocstringExtractor()
|
||
llm_enhancer = LLMEnhancer(LLMConfig(enabled=True))
|
||
hybrid = CostOptimizedEnhancer(llm_enhancer, extractor)
|
||
|
||
results = hybrid.enhance_with_strategy(file_data, symbols)
|
||
|
||
# authenticate_user 应该使用docstring
|
||
assert results['authenticate_user'].llm_tool == "hybrid_docstring_primary"
|
||
|
||
# helper_func 应该完全LLM生成
|
||
assert results['helper_func'].llm_tool == "hybrid_llm_full"
|
||
|
||
# 统计
|
||
assert hybrid.stats.total_symbols == 2
|
||
assert hybrid.stats.used_docstring_only >= 1
|
||
assert hybrid.stats.llm_full_generation >= 1
|
||
```
|
||
|
||
## 6. 实施路线图
|
||
|
||
### Phase 1: 基础设施(1周)
|
||
- [x] 设计数据结构(DocstringMetadata, DocstringQuality)
|
||
- [ ] 实现DocstringExtractor(提取和解析)
|
||
- [ ] 支持Python docstring(Google/NumPy/reStructuredText风格)
|
||
- [ ] 单元测试
|
||
|
||
### Phase 2: 质量评估(1周)
|
||
- [ ] 实现质量评估算法
|
||
- [ ] 启发式规则优化
|
||
- [ ] 测试不同质量的docstring
|
||
- [ ] 调整阈值参数
|
||
|
||
### Phase 3: 混合策略(1-2周)
|
||
- [ ] 实现HybridEnhancer
|
||
- [ ] 三种策略实现(docstring-only, refine, full-llm)
|
||
- [ ] 策略选择逻辑
|
||
- [ ] 集成测试
|
||
|
||
### Phase 4: 成本优化(1周)
|
||
- [ ] 实现CostOptimizedEnhancer
|
||
- [ ] 统计和监控
|
||
- [ ] 批量处理优化
|
||
- [ ] 性能测试
|
||
|
||
### Phase 5: 多语言支持(1-2周)
|
||
- [ ] JavaScript/TypeScript JSDoc
|
||
- [ ] Java Javadoc
|
||
- [ ] 其他语言docstring格式
|
||
|
||
### Phase 6: 集成与部署(1周)
|
||
- [ ] 集成到现有llm_enhancer
|
||
- [ ] CLI选项暴露
|
||
- [ ] 配置文件支持
|
||
- [ ] 文档和示例
|
||
|
||
**总计预估时间**:6-8周
|
||
|
||
## 7. 性能与成本分析
|
||
|
||
### 7.1 预期成本节省
|
||
|
||
假设场景:分析1000个函数
|
||
|
||
| Docstring质量分布 | 占比 | LLM调用策略 | 相对成本 |
|
||
|------------------|------|------------|---------|
|
||
| High (有详细docstring) | 30% | 只生成keywords | 20% |
|
||
| Medium (有基本docstring) | 40% | 精炼增强 | 60% |
|
||
| Low/Missing | 30% | 完全生成 | 100% |
|
||
|
||
**总成本计算**:
|
||
- 纯LLM模式:1000 * 100% = 1000 units
|
||
- 混合模式:300*20% + 400*60% + 300*100% = 60 + 240 + 300 = 600 units
|
||
- **节省**:40%
|
||
|
||
### 7.2 质量对比
|
||
|
||
| 指标 | 纯LLM模式 | 混合模式 |
|
||
|------|----------|---------|
|
||
| 准确性 | 中(可能有幻觉) | **高**(docstring权威) |
|
||
| 一致性 | 中(依赖prompt) | **高**(保留作者风格) |
|
||
| 覆盖率 | **高**(全覆盖) | 高(98%+) |
|
||
| 成本 | 高 | **低**(节省40%) |
|
||
| 速度 | 慢(所有文件) | **快**(减少LLM调用) |
|
||
|
||
## 8. 潜在问题与解决方案
|
||
|
||
### 8.1 问题:Docstring过时
|
||
|
||
**现象**:代码已修改,但docstring未更新,导致信息不准确。
|
||
|
||
**解决方案**:
|
||
```python
|
||
class DocstringFreshnessChecker:
|
||
"""检查docstring与代码的一致性"""
|
||
|
||
def check_freshness(
|
||
self,
|
||
symbol: Symbol,
|
||
code: str,
|
||
doc_metadata: DocstringMetadata
|
||
) -> bool:
|
||
"""检查docstring是否与代码匹配"""
|
||
|
||
# 检查1: 参数列表是否匹配
|
||
if doc_metadata.parameters:
|
||
actual_params = self._extract_actual_parameters(code)
|
||
documented_params = set(doc_metadata.parameters.keys())
|
||
|
||
if actual_params != documented_params:
|
||
logger.warning(
|
||
f"Parameter mismatch in {symbol.name}: "
|
||
f"code has {actual_params}, doc has {documented_params}"
|
||
)
|
||
return False
|
||
|
||
# 检查2: 使用LLM验证一致性
|
||
# TODO: 构建验证prompt
|
||
|
||
return True
|
||
```
|
||
|
||
### 8.2 问题:不同docstring风格混用
|
||
|
||
**现象**:同一项目中使用多种docstring风格(Google, NumPy, 自定义)。
|
||
|
||
**解决方案**:
|
||
```python
|
||
class MultiStyleDocstringParser:
|
||
"""支持多种docstring风格的解析器"""
|
||
|
||
def parse(self, docstring: str) -> DocstringMetadata:
|
||
"""自动检测并解析不同风格"""
|
||
|
||
# 尝试各种解析器
|
||
for parser in [
|
||
GoogleStyleParser(),
|
||
NumpyStyleParser(),
|
||
ReStructuredTextParser(),
|
||
SimpleParser(), # Fallback
|
||
]:
|
||
try:
|
||
metadata = parser.parse(docstring)
|
||
if metadata.quality != DocstringQuality.LOW:
|
||
return metadata
|
||
except Exception:
|
||
continue
|
||
|
||
# 如果所有解析器都失败,返回简单解析结果
|
||
return SimpleParser().parse(docstring)
|
||
```
|
||
|
||
### 8.3 问题:多语言docstring提取差异
|
||
|
||
**现象**:不同语言的docstring格式和位置不同。
|
||
|
||
**解决方案**:
|
||
```python
|
||
class LanguageSpecificExtractor:
|
||
"""语言特定的docstring提取器"""
|
||
|
||
def extract(self, language: str, code: str, symbol: Symbol) -> Optional[str]:
|
||
"""根据语言选择合适的提取器"""
|
||
|
||
extractors = {
|
||
'python': PythonDocstringExtractor(),
|
||
'javascript': JSDocExtractor(),
|
||
'typescript': TSDocExtractor(),
|
||
'java': JavadocExtractor(),
|
||
}
|
||
|
||
extractor = extractors.get(language, GenericExtractor())
|
||
return extractor.extract(code, symbol)
|
||
|
||
class JSDocExtractor:
|
||
"""JavaScript/TypeScript JSDoc提取器"""
|
||
|
||
def extract(self, code: str, symbol: Symbol) -> Optional[str]:
|
||
"""提取JSDoc注释"""
|
||
|
||
lines = code.splitlines()
|
||
start_line = symbol.range[0] - 1
|
||
|
||
# 向上查找 /** ... */ 注释
|
||
for i in range(start_line - 1, max(0, start_line - 20), -1):
|
||
if '*/' in lines[i]:
|
||
# 找到结束标记,向上提取
|
||
return self._extract_jsdoc_block(lines, i)
|
||
|
||
return None
|
||
```
|
||
|
||
## 9. 配置示例
|
||
|
||
### 9.1 配置文件
|
||
|
||
```yaml
|
||
# .codexlens/hybrid_enhancement.yaml
|
||
|
||
hybrid_enhancement:
|
||
enabled: true
|
||
|
||
# 质量阈值
|
||
quality_thresholds:
|
||
use_docstring: high # high/medium/low
|
||
refine_docstring: medium
|
||
|
||
# LLM选项
|
||
llm:
|
||
tool: gemini
|
||
fallback: qwen
|
||
timeout_ms: 300000
|
||
batch_size: 5
|
||
|
||
# 成本优化
|
||
cost_optimization:
|
||
generate_keywords_for_docstring: true
|
||
skip_test_files: true
|
||
skip_private_methods: false
|
||
|
||
# 语言支持
|
||
languages:
|
||
python:
|
||
styles: [google, numpy, sphinx]
|
||
javascript:
|
||
styles: [jsdoc]
|
||
java:
|
||
styles: [javadoc]
|
||
|
||
# 监控
|
||
logging:
|
||
log_strategy_decisions: false
|
||
log_cost_savings: true
|
||
```
|
||
|
||
### 9.2 CLI使用
|
||
|
||
```bash
|
||
# 使用混合策略增强
|
||
codex-lens enhance . --hybrid --tool gemini
|
||
|
||
# 查看成本统计
|
||
codex-lens enhance . --hybrid --show-stats
|
||
|
||
# 仅对高质量docstring生成keywords
|
||
codex-lens enhance . --hybrid --keywords-only
|
||
|
||
# 禁用混合模式,回退到纯LLM
|
||
codex-lens enhance . --no-hybrid --tool gemini
|
||
```
|
||
|
||
## 10. 成功指标
|
||
|
||
1. **成本节省**:相比纯LLM模式,降低API调用成本40%+
|
||
2. **准确性提升**:使用docstring的符号,元数据准确率>95%
|
||
3. **覆盖率**:98%+的符号有语义元数据(docstring或LLM生成)
|
||
4. **速度提升**:整体处理速度提升30%+(减少LLM调用)
|
||
5. **用户满意度**:保留docstring信息,开发者认可度高
|
||
|
||
## 11. 参考资料
|
||
|
||
- [PEP 257 - Docstring Conventions](https://peps.python.org/pep-0257/)
|
||
- [Google Python Style Guide - Docstrings](https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings)
|
||
- [NumPy Docstring Standard](https://numpydoc.readthedocs.io/en/latest/format.html)
|
||
- [JSDoc Documentation](https://jsdoc.app/)
|
||
- [Javadoc Tool](https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html)
|