catlog22 5123675fbf docs: 重新组织场景顺序,突出头脑风暴在复杂功能开发中的作用
### 主要改进

**场景顺序优化** - 从简单到复杂的逻辑流程:
1. **场景 1:快速功能开发** - 简单功能的 plan → execute 模式
2. **场景 2:复杂功能的多智能体头脑风暴** - 展示完整工作流:brainstorm → plan → execute
3. **场景 3:UI 设计** - 专业化工作流
4. **场景 4:Bug 修复** - 维护场景

**场景 2 的关键改进**:
- 明确头脑风暴应在 plan 之前,用于复杂功能的需求分析
- 展示完整的三阶段工作流(头脑风暴 → 规划 → 执行)
- 简化说明,移除冗余的角色列表和阶段详情
- 聚焦于"何时使用头脑风暴"的实用指导

**内容精简**:
- 移除重复的专家角色详细列表(从原来的详细分类简化为一句话)
- 移除工作流阶段的详细说明(用户可从实际执行中了解)
- 更紧凑的场景描述,提高可读性
- 减少 22 行代码(99 → 77 行变更)

**逻辑一致性提升**:
- 场景 1:适合新手,快速上手
- 场景 2:展示 CCW 最强大的功能 - 多智能体协作
- 场景 3-4:专业化场景,展示多样性

**用户体验改进**:
用户现在可以清楚地理解:
1. 简单功能直接 plan
2. 复杂功能先 brainstorm 再 plan
3. 完整的工作流逻辑顺序

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-20 14:10:23 +08:00

🚀 Claude Code Workflow (CCW)

Version License Platform MCP Tools

Languages: English | 中文


Claude Code Workflow (CCW) transforms AI development from simple prompt chaining into a robust, context-first orchestration system. It solves execution uncertainty and error accumulation through structured planning, deterministic execution, and intelligent multi-model orchestration.

🎉 Latest: v4.6.2 - Documentation Optimization & /memory:load Command Refinement. See CHANGELOG.md for details.

📚 New to CCW? Check out the Getting Started Guide for a beginner-friendly 5-minute tutorial!


Core Concepts

CCW is built on a set of core principles that differentiate it from traditional AI development approaches:

  • Context-First Architecture: Pre-defined context gathering eliminates execution uncertainty by ensuring agents have the correct information before implementation.
  • JSON-First State Management: Task states live in .task/IMPL-*.json files as the single source of truth, enabling programmatic orchestration without state drift.
  • Autonomous Multi-Phase Orchestration: Commands chain specialized sub-commands and agents to automate complex workflows with zero user intervention.
  • Multi-Model Strategy: Leverages the unique strengths of different AI models (Gemini for analysis, Codex for implementation) for superior results.
  • Hierarchical Memory System: A 4-layer documentation system provides context at the appropriate level of abstraction, preventing information overload.
  • Specialized Role-Based Agents: A suite of agents (@code-developer, @test-fix-agent, etc.) mirrors a real software team to handle diverse tasks.

⚙️ Installation

For detailed installation instructions, please refer to the INSTALL.md guide.

🚀 Quick One-Line Installation

Windows (PowerShell):

Invoke-Expression (Invoke-WebRequest -Uri "https://raw.githubusercontent.com/catlog22/Claude-Code-Workflow/main/install-remote.ps1" -UseBasicParsing).Content

Linux/macOS (Bash/Zsh):

bash <(curl -fsSL https://raw.githubusercontent.com/catlog22/Claude-Code-Workflow/main/install-remote.sh)

Verify Installation

After installation, open Claude Code and check if the workflow commands are available by running:

/workflow:session:list

If the slash commands (e.g., /workflow:*) are recognized, the installation was successful.


🛠️ Command Reference

CCW provides a rich set of commands for managing workflows, tasks, and interacting with AI tools. For a complete list and detailed descriptions of all available commands, please see the COMMAND_REFERENCE.md file.

For a detailed technical specification of every command, see the COMMAND_SPEC.md.


🚀 Getting Started

The best way to get started is to follow the 5-minute tutorial in the Getting Started Guide.

Here is a quick example of a common development workflow:

  1. Start a Session:
    /workflow:session:start "Implement user login feature"
    
  2. Create a Plan:
    /workflow:plan "Implement JWT-based user login and registration"
    
  3. Execute the Plan:
    /workflow:execute
    

🤝 Contributing & Support

📄 License

This project is licensed under the MIT License. See the LICENSE file for details.

Description
JSON-driven multi-agent development framework with intelligent CLI orchestration (Gemini/Qwen/Codex), context-first architecture, and automated workflow execution
Readme MIT 33 MiB
Languages
TypeScript 38.2%
Python 24.2%
HTML 16.3%
JavaScript 15.2%
CSS 4.5%
Other 1.6%